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The behavior of a nano-scale cylindrical body (e.g., a fiber), lying on a substrate and
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acted upon by a combination of normal and tangential forces, is the subject of this
investigation. As the scale decreases to the nano level, adhesion becomes an important

issue in this contact problem. Thus, this investigation treats the two-dimensional plane
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strain elastic deformation of both the cylinder and the substrate during a rolling/sliding
motion, including the effect of adhesion using the Maugis model. For the initiation of
sliding, the Mindlin approach is used, whereas for rolling, the Carter approach is utilized.
Each case is modified for nano-scale effects by including the effect of adhesion on the

contact area and by using the adhesion theory of friction for the friction stress. Analytical
results are given for the normal and tangential loading problems, including the initiation
of sliding and rolling in terms of dimensionless quantities representing adhesion, cylinder
size, and applied forces. [DOI: 10.1115/1.1831291]

Introduction

At the macro-scale, adhesion between contacting bodies has a
negligible effect on surface interactions. However, as the contact
size decreases, adhesion between the bodies becomes significant,
especially for clean surfaces and lightly loaded systems. As tech-
nology advances, the scale of some devices decrease and adhesion
becomes an important issue, especially in such applications as
information storage devices and microelectromechanical systems.

In contacting bodies, atoms of materials are separated by an
equilibrium distance z, of a few angstroms. At that separation,
van der Waals forces are dominant over electrostatic forces [1].
The derivative of the Lennard-Jones potential expresses the sur-
face pressure in terms of the separation z between two parallel

surfaces
9 3
20 20
z z

where w is the work of adhesion w=y,+vy,—vy,. Here, the
surface energies of the contacting bodies are y; and 7y,, and the
interface energy of the two surfaces is y,,. The Lennard-Jones
potential includes attractive forces, which act over a long range,
and repulsive forces, which act over a short range. If the separa-
tion is less than the equilibrium spacing, the repulsive (i.e., con-
tact) forces are dominant, whereas if the separation exceeds the
equilibrium spacing, there will be a net attractive force (i.e., the
adhesion force). The Lennard-Jones pressure vanishes at the equi-
librium spacing.

Numerous studies have been conducted on the adherence of
spherical bodies. Bradley used the attractive force between two
molecules and, by integrating through the whole bodies, found the
cohesive force between two rigid spheres of radii R, and R, [2].
The pull-off force F required to separate two rigid spherical bod-
ies was found to be

8w

Pa(2)= P

F=27mwR 2)
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where R=R|R,/(R;+R,) is the equivalent radius of curvature.

Johnson, Kendall, and Roberts (JKR) presented a theory on the
adherence of deformable elastic bodies [3]. In the JKR approxi-
mation, the adhesion outside the contact region is assumed to be
zero. The balance among the elastic, surface, and potential ener-
gies was used, and the resulting stresses at the edges of the contact
were infinite. The contact area is larger than the contact area pre-
dicted by Hertz, and the pull-off force was found to be

F=(3/2)mwR (3)

A few years later, Derjaguin, Muller, and Toporov (DMT) pre-
sented another theory on the adhesion of deformable elastic bod-
ies [4]. In the DMT theory, the adhesion force is taken into ac-
count outside the contact area, but the form of the stress
distribution in the contact is assumed to be unaffected. The pull-
off force was found to be the same as the Bradley relation. It is
seen that for both the JKR and DMT theories, the pull-off force is
independent of the elastic properties of the materials.

Although the JKR and DMT theories seem to be competitive, it
was shown by Tabor [5] that these two theories represent the
extremes of a parameter u, which is the ratio of elastic deforma-
tion to the range of adhesive forces, i.e.,

13
Rw?

3
E2z0

n= “

where E is the composite Young’s modulus. Thus, bodies in which
the elastic deformation is large compared to the range of surface
forces are in the JKR regime, whereas the DMT regime corre-
sponds to elastic deformations, which are much less than the
range of surface forces. Greenwood constructed an adhesion map
that covers these regimes [6].

Maugis presented a model for the transition between the JKR
and DMT theories [7]. Similar to the Dugdale model of a crack,
the Maugis model assumes a constant tensile surface stress o in
regions where the surfaces are separated by a distance less than £,
where £ is obtained from the work of adhesion through the rela-
tion w=cgyh. When this work of adhesion is set equal to that for
the Lennard-Jones potential, the maximum separation distance for
adhesion & (measured from the equilibrium position) is found to
be 0.97z,, where o is taken as the theoretical strength. Baney
and Hui [8] used the Maugis model to investigate the two-
dimensional problem of the adhesion of two circular cylinders.
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Results are given for the contact and adhesion regions as functions
of the applied normal force and also for the pull-off force.

In this paper, the adhesion of contacting cylinders, or equiva-
lently a cylinder in contact with a half-space, at the nano-scale is
considered. If the cylinder is subjected to a combined tangential
and normal loading, it may remain at rest, roll, slide, or undergo a
complex motion depending on the magnitudes and the application
points of the loading. The elastic behavior of the cylindrical body
and half-space with adhesion are investigated using the plane
strain theory of elasticity. A similar problem was treated in the
thesis by Sari [9].

This nano-scale sliding and rolling analysis differs from the
corresponding macro-scale problem in two important ways. First,
due to the small scale of the contact area, adhesion becomes im-
portant. The Maugis model is used to approximate the adhesive
stress outside the contact region in a manner similar to Baney and
Hui. Second, in the macro scale, Coulomb friction, which states
that frictional force is proportional to the normal load, is consid-
ered valid. Due to surface roughness in the contact of two nomi-
nally flat surfaces, the bodies touch at a discrete number of con-
tacts, so that the real contact area becomes much smaller than the
apparent contact area. If a statistical distribution for the asperity
summits is assumed, it turns out that the real area of contact is
approximately proportional to the normal force. This result is con-
sistent with the adhesion theory of friction. According to the ad-
hesion theory of friction, contacting asperities form strong adhe-
sive junctions. In order to have a relative motion between the
contacting bodies, these junctions need to be broken, which oc-
curs when the interfacial shear stress reaches the shear strength of
the weaker material. Therefore, a constant shear stress occurs in
the real area of contact during the relative motion of contacting
bodies. Thus, a constant frictional shear stress along with a near
proportionality between normal load and real contact area, gives a
friction force approximately proportional to the normal load, i.e.,
Coulomb friction. At the nano scale, however, in which the con-
tact radius is in the order of 10 nm or less, it seems more reason-
able to assume a single real contact area; i.e., constant shear stress
during sliding.

The atomic force microscopy (Carpick et al. [10]) and surface
force apparatus (SFA) (Homola et al. [11]) experiments as well as
the modeling work of Hurtado and Kim [12,13] show that the
friction stress is scale dependent. The friction stress has a constant
high value (~G®*/43) in the nanoregion (contact radii less than
about 15 nm) and a constant but lower value (~G*/1286) in the
micro region (contact radii greater than about 40 wm), where
G*=2G,G,/(G+G,) and G, and G, are the shear moduli of
each contacting body. A transition region connects these two re-
gions. Because the focus of our investigation is the nano region,
the friction stress is assumed to be constant rather than scale de-
pendent. The work of adhesion (w) for solids typically varies from
about 50 mJ/m? to as high as a few J/m? for ultra-clean metal-to-
metal contacts (e.g., Israelachvili [14]). The actual adhesion en-
ergy is affected by contaminants, but for the case of clean copper-
on-copper contact w~4 J/m?> and its elastic modulus is Ec,
~100 GPa, leading to o,/E~0.2, where E is the composite
modulus defined later.

Adhesion of cylindrical bodies on a substrate is encountered in
nano-wires, carbon nano-tubes and nano-fibers, and in different
fields such as microbiology, microelectronics, and micro- and na-
noelectromechanical systems devices. Determination of the forces
necessary to roll or slide a cylindrical body on the substrate are
important quantities to know in these applications. In some cases
it is important to manipulate these single fibers to form a structure,
whereas in other instances the sliding and rolling motions are
important in contamination removal processes.

Theory and Discussion of the Results

The contact of a cylindrical body of radius R with a flat surface
is investigated. The results are equally valid for the contact of two
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Sliding/Rolling Direction

.22

Ci !

Body 1

Fig. 1 Contact of a cylinder with a half-space under normal
and tangential loading

cylinders by using the equivalent radius of curvature previously
defined. Linear plane strain elasticity is used throughout, which
implies that the forces are given per unit length.

According to plane strain linear elasticity (e.g., Barber [15]),
the derivative of the surface normal displacements can be written
in terms of normal and shear stresses as

dw"=ul?)y A [ p(&)d¢ B
e B o

Similarly, the relation between the derivative of the relative dis-
placements of the bodies in the tangential direction to the bound-
ary stresses is given by

dw"=u®)y A (e p(HdEé B

o an) e apt @

In Egs. (5) and (6) p, is the tangential traction in the x-direction
and the contact pressure p,, is considered positive in compression.
The material parameters A and B are given by
4(1_U1)+4(1_U2) 8 B 2_41./] 2_4U2
TG, G, E 7 G, G,

)

== + E=2G{(1+v,)

where G, G, are the shear moduli, v;, v, are the Poisson ratios,
E,, E, are the moduli of elasticity of bodies “1” and “2”, re-
spectively, and E is the composite modulus. Equation (5) can be
simplified for either identical materials (B=0) or for the friction-
less case [ p,(x)=0]. Even if the materials are not identical, the
effect of the constant B is usually small [16] and is often ne-
glected. Thus, normal/shear stresses do not produce relative
tangential/normal displacements.

Normal Loading. Consider normal loading in which a nor-
mal load F is applied to a cylinder with the tangential force T'
equal to zero. This problem has been solved by Baney and Hui
[8], but their analysis is summarized here because the results of
the normal loading problem determine the contact region used in
the sliding and rolling analyses. There is a central contact zone
(—a<x<a) surrounded by two adhesion zones (a<|x|<c) in
which the separated surfaces are under a constant tensile stress, as
described by the Maugis adhesion model [7]. This configuration is
shown in Fig. 1 where, by symmetry, c;=c,=c, hy=h,=h, and
e=0. The tensile adhesive stress is effective up to a separation 4,
beyond which it vanishes.

The geometric relation for the deformations in the normal di-
rection (u;') and u(vz) for bodies 1 and 2, respectively) at the
contact interface is
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(n_,(2)— _
uy u,’= oot ==,

—a<x<
IR a<x<a 8)

in the contact zone, where &, is the maximum cylinder penetra-
tion, which occurs at the center of the contact zone.

By proceeding as Baney and Hui [8], Egs. (5) and (8) are com-
bined using the Maugis condition in the adhesion zones

py(x)=—0g, —c<x<—a, a<x<c )

with B=0. The solution is given by the superposition of the Hertz
solution, the solution for an exterior crack (Tada et al. [17], p.
110), and the homogeneous solution of Eq. (5). That superposition
of solutions is also subject to the conditions that the stress is
bounded at both ends (x= *a). The result is [8]

2 2

E 7 20 4 c"—a
a X —tan 2 >

T - pE,

py(x) —a<x<a

(10)

Because the contact half-width (a) and the adhesion half-width
(c) are both unknown, two extra equations are necessary. Using
force equilibrium in the y-direction, the total applied load F can be
related to the contact half-width (a), i.e.,

fﬁ Py(EdE=2(c—a)oy=F (an

resulting in

wEa?

P Y

4R

12)

The geometrical relation for the relative separation of the two
bodies at x=c¢ and x=a is

2_ 2
(oS "4
(uy ' —uy")g= R h (13)
which can be used along with Eq. (5), and leads to
am 4o a
- 2_ 4| — 2_1_ + 2_
IR Jym?—1 = Jm?*—1 R In(m+\ym~—1)
4oom c
— In(m)=—, m=-— (14)
mE a a

This solution, with adhesion included, shows that the pressure
distribution is compressive in the central part of the contact zone
but tensile at the ends of the contact zone.

As determined by Baney and Hui [8], the solution (12) and (14)
can be written using the dimensionless quantities

_ F _ a 4o
F:(wszR)'“’ azz(sz/wE)‘B’ )\:(WZEZW/R)IB
(15)
as
F=a’-\aym>—1 (16)
and

%Aﬁz[m Jmi—1—In(m+ym?>—1)]+ %)\25[ Jm*—1In(m
+\m?—1)—mIn(m)]=1

Their parameter N is similar to that defined by Maugis.
It is noted that Egs. (16) and (17) form a pair of coupled non-

a7)

linear equations with F' known and a and m unknown. However, it
is more convenient to solve these equations by slowly varying m
from just above unity to a large number. Equation (17) is then
solved as a quadratic equation for a with only one positive root.
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Fig. 2 The variation of the dimensionless contact half-width

(a) with the dimensionless normal load (I:') for various values
of A

The corresponding value of F is determined from Eq. (16). The
results for the dimensionless contact half-width (a) versus the

dimensionless normal force (F) for various values of A are shown
in Fig. 2. As discussed in [8], large N correspond to the JKR
regime, small N\ approach Hertz contact, and when A\ is of order
unity the results can be approximated by the DMT theory. For
nonzero A there is a pull-off force which, for a sufficiently large
value of N\, occurs at a nonzero contact radius.

Initiation of Sliding. Tangential forces can be transmitted by
friction in contacting bodies. Consider a cylinder in contact with a
half-space, compressed by a normal force F, and acted upon by a
tangential force T (Fig. 1). The problem is also solved for the
uncoupled case; i.e., B=0 in Eq. (5). Thus, the contact area re-
mains in a state of stick during the application of the normal load
and the contact area remains constant during the application of the
tangential force. With the normal load constant, the tangential
force is gradually increased in order to initiate sliding.

Mindlin studied the initiation of macro-scale sliding of a cylin-
der using Coulomb friction without adhesion [18]. He first as-
sumed that stick prevailed everywhere during the tangential load-
ing phase. When that problem is solved, however, a singularity
exists for the shear stress distribution at the edges x=|a|, whereas
the normal stress is bounded. Hence, the frictional inequality must
be violated; so it was deduced that slip will occur at the edges of
the contact zone. Thus, according to Mindlin’s theory there is a
central stick zone (|x|<d) surrounded by slip zones symmetri-
cally located in both the leading and trailing edges.

In nano-scale contacts, adhesion between the two bodies will
affect the contact width. This effect in cylindrical contacts is de-
scribed in the previous section. With respect to tangential loading,
in the macro scale, Coulomb friction is used, whereas at the nano
scale, the friction stress in the slip zone is assumed to be constant;
i.e., the adhesion theory of friction, as discussed previously.

According to the plane strain linear elasticity formulation, the
relation between the relative deformations of the bodies in the
tangential direction to the boundary stresses is given by Eq. (6). In
the slip regions

px)=7y, d<l|x|<a (18)
whereas in the stick region
AV —u®)
—————=0, —d<x<d (19)
dx
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Prior to the initiation of global sliding motion, the horizontal shift
(i.e., u(l) (2)) of the bodies in the stick zone (—d<<x<d) will
be constant.

The solution of Eq. (6) subject to Egs. (18) and (19) can be
found by superposition of the solution for an external crack loaded
by a symmetric constant shear stress in a finite region near the
crack tip (Tada et al. [[17], p. 110])

27'0 a’—d* a —d2
S~ tan” > —d<x<d
2 x2 2—x

(20)

and the homogeneous solution of Eq. (6) given by, e.g., Erdélyi
[19]

D,

m —d<x<d

Tey =

2

where D, is determined from the condition that 7, is bounded at
=|d|. Thus, the shear stress in the stick region becomes

27'0 1
=—tan —d<x<d
T

Txy

(22)
Force balance in the horizontal direction can be used to find the
relation between the half-length of the stick zone (d) and the ap-
plied shear force (7). This procedure gives

d

T=2(a—d)70+f T(&)dé (23)

The integral in Eq. (23) has been evaluated by Baney and Hui in
[8] and gives

T=2ma’—a

As the tangential force reaches the critical value of 2ar, a state
of complete slip (i.e., global sliding) occurs with d=0.

(24)

Pure Sliding. If the contacting cylinder has a relative sliding
motion with respect to the plane it is in contact with, there need
not be symmetry, due to the nonlinear nature of adhesion. In this
case, the origin of the coordinate system will be chosen in the
center of the contact region. An eccentricity e will indicate the
value of x corresponding to the apex of the undeformed cylinder.
The leading adhesion zone will be a strip (a<x<c,) and the
trailing adhesion zone will be another strip (—c¢;<x<—a), as
shown in Fig. 1.

The geometrical relation between the deformations of the bod-
ies in the y-direction inside the contact is

(x—e)?
2R

ul—ulP=—5,+ (25)

The same elasticity formulation used for the symmetric normal
contact can be used here; i.e., Eq. (5) subject to Eq. (25) in the
contact region —a<<x<<a. The solution can be found by the su-
perposition of four problems. The first problem is the solution for
a constant tensile stress in the leading edge (a<x<c,) and the
second is for a constant tensile stress in the trailing edge (—c¢;
<x<—a). These solutions, which correspond to an external
crack, are in Tada et al. [[17], p. 107]. The mode-I stress intensity
factors at the leading and trailing edges are

K,(a)——oo\/\{(l-i-mz VmE=T1+(1=m)Jm3=1}

(26)

Ki(—a)=—0oy \/%{(1+m1)\/m%—1+(1—m2)vm§—l}
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where m;=c,;/a and m,=c,/a. The third problem corresponds
to the solution of Egs. (5) and (25) without adhesion; i.e., a Hertz-
type solution with an eccentricity that can be found using [19]

E a—x
Va*—x*— —a<x<
py(x)= ZR( ar=xt—e [, a<x<a (27)
and the fourth is the homogeneous solution of Eq. (5); i.e.,
py(x)=D/\a’—x?, —a<x<a (28)

The sum of these four solutions must be such that the normal
stress is bounded at the ends at x=|a|. Recall that the model-I
stress intensity factor at x=a is defined by

K(a)=1lim y2m(a—x)Ty,

X—a

(29

The condition that the normal stress is bounded at x=a becomes

== T {14 my) 3= T+ (1= my) = T}

(30)

whereas the requirement that the normal stress is bounded at x
= —a, becomes

UO {(1+m1)\/ “14+(1—my)Jm2 }+— 31)

The geometrical relations for the separation of the two bodies can
be used that is in the same form as Eq. (13), but with different
integration limits due to nonsymmetry.

When the cylinder is in a state of steady sliding, the adhesion
effect in the trailing edge is assumed to be larger than in the
leading edge. This assumption is considered valid because adhe-
sion between surfaces is affected by surface contamination. Since
the surface will be partially cleaned due to the sliding motion of
the contacting surfaces, adhesion in the trailing edge is expected
to be larger than in the leading edge. This effect is accounted for
by taking the adhesion separation distance in the trailing edge
(hy) larger than in the leading edge (%,), whereas o is assumed
unchanged. Due to the difference between %, and h,, the adhe-
sion width values will not be the same in the leading and the
trailing edges. Since there are two more unknowns, the separation
equations must be written for both the leading and trailing edges.
At the leading edge this procedure gives

2
(2))52: ((32_3) _
Y Za 2R

(a—e)?
(u;l)—u

hy (32)

and at the trailing edge it yields

C(—c;—e)’—(—a—e)

1 2\~
(i =) = R heo (33
Superposition of the four solutions yields

200amy 200a | 1+ mymy
R — + _ + B S ————
mEh, (mz=1) wEh, (m+my)cosh my+m,

mlxlm%h/mgl] SR, ——{(my—2ela)ym;—1—(1

h,

—2ela)ln(my+~m )}+ ln(m2 m2—1)=—h—

1

(34)

from the leading edge condition and
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2o0amy )+ 200a N - 1+mim,
wEh, (mi=1) wEh, (m +my)cos my+m,
2
a
—mZ\/m%—l\/mg—l]—m{(ml+2e/a)\/m%— —(1
1

2D
—2ela)In(m,+mi—1)}+ ﬁln(ml+ ymi—1)=-1
I

(35)
from the trailing edge condition.
The applied normal force can be found from force equilibrium
in the y-direction, resulting in
mEae
2R

wEa?
F=wD+ ———

4R (36)

A resultant moment will act on the upper body due to the asym-
metric normal stress distribution. If moment equilibrium is written
with respect to the center of contact, the resultant moment (clock-
wise direction acting on the half-space taken to be positive) is
found and is given by

wEa’e

M=— (37)

The solution of Egs. (34)—(37) can be facilitated with the nondi-
mensional quantities (Eq. (15)). It can readily be shown that

200¢ Na 2D wD\a 5 D

7TEh1 4 Ehl 4 ’ (Toa’ (38)
a® L, e - M
Rh, a- ety "~ 2wR

in which w=oh, . By using Egs. (38), the nondimensional force
and moment become

— a — —

F= 5AD5+52—2Ea_2, M=ea’ (39)
Thus Egs. (34) and (35), along with the explicit expressions in
Egs. (30) and (31) and the nondimensional quantities in Eq. (38),
represent a pair of equations which, for specified N\ and i, /h,,
can be solved for m; and m,. Finally, the nondimensional force
and moment are found from Eq. (39).

The results for the dimensionless contact half-width (a) versus

the dimensionless normal force (F) for various values of A are
shown in Figs. 3 and 4 for h,/h,=2 and h/h,=35, respectively.
As hy/h, increases, the force required to produce a given contact
width increases. This effect is greater for large X (JKR region, due
to elastic deformation) than it is for moderate X (DMT regime,
limited elastic deformation) or small \ (Hertz regime, small adhe-
sion). Figures 5 and 6 show the dimensionless adhesion half-width
difference (m,—m,) versus dimensionless contact half-width (a)
for different values of N with h,/h,=2 and h,/h,=35, respec-
tively. This measure of the asymmetry of the adhesion zones be-
comes large for small values of the dimensionless contact radius
(a). It is also much greater for small A than for large \. This result
may appear counterintuitive. However, the contact half-width is
normalized by a quantity that includes the cube-root of the work
of adhesion, whereas \ varies as the two-thirds power of w. In
addition, large \ corresponds to greater elastic deformation, which
is better capable of accommodating the asymmetry in the work of
adhesion. The results for the dimensionless average adhesion
length (m; +m,)/2 versus dimensionless contact radius are shown
for various values of \ in Figs. 7 and 8 for i, /h,=2 and h,/h,

=5, respectively. Finally, the dimensionless moment (M) versus

the dimensionless normal force (1_7 ) is shown for various values of
N\ in Figs. 9 and 10 for h,/h,=2 and h,/h,=35, respectively.
Note that as the normal force approaches the pull-off force, the
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Fig. 3 The variation of the dimensionless contact half-width

(a) with the dimensionless normal load (I:') for various values
of A during sliding with hy/h,=2

moment approaches a finite value, even in the small N\ regime
where a vanishes at pull-off. This result is the combined effect of
the asymmetry in the work of adhesion along with the small elas-
tic deformation.

Rolling. The problem of steady-state rolling of an elastic cyl-
inder on an elastic half-space (or equivalently one cylinder rolling
on another) with Coulomb friction was solved by Carter [20].
According to Carter’s solution, the leading edge of the contact
zone (d<x<a) is in a state of stick and the trailing edge (—a
<x<d) is in a state of slip. In Carter’s approach, x=x'—Vr is a
coordinate moving to the right with the speed of the contact re-
gion, and x' represents the stationary coordinate system. As in the
application to a locomotive wheel [20], the upper body is the
driving cylinder. During this rolling motion, the linear velocity of
the center of the cylinder is slightly less than wR, where w is the
angular velocity. Similarly, for two rollers, the angular velocities
of the rollers will not be inversely proportional to their radii. Due
to slip, the driving roller linear velocity will have a somewhat
greater magnitude than that of the driven roller. The creep velocity
represents this velocity difference.

At the nano scale the shear stress (friction stress) in the slip

e
o

Contact Half-Width: a
N
o

- —
o 13
) T

o
(¢,
T

o
o

-2 -1 0 1.2
Normal Force: F

Fig. 4 The variation of the dimensionless contact half-width

(a) with the dimensionless normal load (I:') for various values
of A\ during sliding with h,/h,=5
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Adhesion Half-Width Difference: m, - m,

1 2
Contact Half-Width: a

Fig. 5 The difference between the dimensionless adhesion
half-widths of the trailing and leading edges (m;—m,) versus
dimensionless contact half-width (a) for various values of A
during sliding with h;/h,=2

zone is assumed to be constant, as previously discussed. As with
sliding, adhesion affects the relation between the normal force and
contact width.

The tangential relative displacement (shift) between the bodies
is expressed as

s(x,0)=u'? (x,0,0)— ull (x,0,6) + C(1)

where C represents the rigid body motion of the upper body rela-
tive to the lower body. In the stick zone, the time derivative of the
shift in the moving coordinate system is zero. The stick condition
can be written as

(40)

d .
S(x,0)=V—(uy—u,)+C=0, d<x<a

dx “D)

where C(1) is the constant rigid body slip (or creep) velocity.
Furthermore the shear stress is constant in the slip region, i.e.,

px('x): — 70> (42)

The solution of Eq. (6), subject to Egs. (41) and (42), can be
found by superposition of the solution for a crack external to the
stick region and loaded in shear on one side, i.e., the slip zone
(Tada et al. [[17], p. 107]), the solution of Eq. (6) due to the

—a<x<d

1
A=100

Adnhesion Half-Width Difference: m, - m,

1 2
Contact Half-Width: a
Fig. 6 The difference between the dimensionless adhesion
half-widths of the trailing and leading edges (m;—m,) versus

dimensionless contact half-width (a) for various values of A
during sliding with h;/h,=5
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Average Adhesion Half-Width: (m, + m,)/2

1 2
Contact Half-Width: a

Fig. 7 The average dimensionless adhesion half-width of the
trailing and leading edges (m;+m,)/2 versus dimensionless
contact half-width (a) for various values of A during sliding
with hy/hy,=2

constant creep velocity, and the homogeneous solution of Eq. (6).
The mode-II stress intensity factors for the external crack problem
at the ends of the stick zone are [17]

e o 5 / 'a+d) 1\/ﬁ ‘h71(3a+d
K )—\/7; a(aifd t3 (a—d) cos P
(43)

o 'a+d) 1\/7 71(3a+d\
\/7; 2 a ﬁ *5 Z(a*d)cosh a*d)

whereas the solution to the creep velocity and the homogeneous
solution are

Ky(a)=

d<x<a (44)

) CE \/a*er D,

p(0)= 55\ —t —7s,
2V Nx—=d  \(a—x)(x—d)

The requirement that the solution be bounded at x=a and x

=d leads to
+d

1 3
D=~ :_){\/m—z(a—d)coshl(;d)] 45)

4.0

Average Adhesion Half-Width: (m, + m,)/2

1 2
Contact Half-Width: a

Fig. 8 The average dimensionless adhesion half-width of the
trailing and leading edges (m;+m,)/2 versus dimensionless
contact half-width (a) for various values of A during sliding
with hy/h,=5
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Fig. 9 The dimensionless resultant moment (Il7l) versus di-
mensionless contact half-width (a) for various values of \ dur-
ing sliding with h,/h,=2

and

3a+d>
(46)

—_——— — =1
cosh ( p—

Vv wE
If force equilibrium is written in the x-direction, the applied shear
force can be related to the contact width parameter (d) by

T= fa p(x)dx=—19\2a(d+a)

—a

(47)

Equation (47) gives the variation of the applied tangential force
with the extent of the slip zone. The greater the traction force, the
larger is the slip zone. As d—a the rolling motion approaches
complete slip. Equation (46) gives the dimensionless creep veloc-
ity, which is linear in 7,/E and varies nonlinearly with the slip
zone parameter (d/a). As the traction force increases, d increases
and hence the magnitude of the creep velocity increases logarith-
mically according to Eq. (46). The meaning of the negative creep
velocity is that wR for the driving wheel is greater than the ve-
locity of the contact zone.

Conclusions

As the scale of contacting bodies decreases, adhesion effects
become significant, especially for smooth surfaces and lightly

1.00 T T T T

<

3

o
T

o

N

a
T

-1 0 1 2
Normal Force: F

0.00

Fig. 10 The dimensionless resultant moment (II7I) versus di-
mensionless contact half-width (a) for various values of \ dur-
ing sliding with h;/h,=5
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loaded systems. The behavior of a cylinder (e.g., a fiber), which
adheres to a substrate and is subjected to a combination of normal
and tangential forces, is the subject of this investigation. In the
presence of a tangential load, the cylinder might slide, roll, or
undergo a complex motion. This paper treats the two-dimensional
elastic contact problem of the cylinder on the substrate during a
rolling/sliding motion and includes the effect of adhesion using
the Baney and Hui version of the Maugis—Dugdale model.

Mindlin’s classic investigation of the initiation of sliding of a
cylinder on a half-plane used Coulomb friction. As the scale de-
creases, two effects should be included. First, adhesion increases
the contact width, especially under light normal loading. Second,
according to the adhesion theory of friction for a single real area
of contact, the shear stress can be assumed to be constant in the
slip regions. These effects are included for the uncoupled case in
which normal/shear loading does not produce relative tangential/
normal displacements. During the initiation of sliding, there is a
central stick zone surrounded by slip regions in the leading and
trailing edges. As the applied tangential load increases, the lengths
of the slip zones increase until, at a certain value of the tangential
force, there is complete slip.

During steady sliding, the abrasive action of the shear stress can
be expected to partially clean the surface, resulting in different
leading and trailing edge adhesive properties. This effect is in-
cluded in the model of steady nano-scale sliding.

Carter investigated the rolling of a cylinder on a substrate at the
macro-scale. Similarly to the sliding case, as the dimensions ap-
proach the nano-scale, adhesion under normal loading and con-
stant shear stress in the slip regions under tangential loading are
assumed. The variations of the creep velocity and the length of the
stick zone with the applied shear force are determined. As the
traction force increases, the stick zone length decreases and the
creep velocity increases eventually leading to pure slip with
rotation.

Future work should include the analysis of the transition from
sliding to rolling and applications to technological problems. It
should also address the analysis of the three-dimensional problem
(spherical case) for sliding and rolling motions.
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With Gyroscopic Coupling

The sharp divergence of two root-loci for a critical value of the parameters is called
veering. Veering phenomena are interesting since they involve relevant energetic ex-
changes between the eigenmodes and strongly affect the undamped forced response of the
system. A straightforward perturbation approach has already been used in the literature
to analyze the dependence of the eigensprectrum on a system parameter and formulate a
veering criterion. This perturbation approach and other ideas are generalized to the
study of veering in discrete and continuous systems with gyroscopic operators of internal
coupling and the results applied to a real electromechanical interaction.

[DOI: 10.1115/1.1940666]

1 Introduction

A linear conservative system is considered endowed with all the
possible kinds of coupling between its degrees of freedom: elastic,
gyroscopic, and inertial. The associated eigenvalue problem is pa-
rametrized by a set of coordinates on the space of system param-
eters P; thus the dependence on parameters of the eigenvalues can
be geometrically described by N hypersurfaces in the space P
X R. However, for practical reasons, only some sections of these
hypersurfaces are usually plotted. Here the attention is focused on
the two-dimensional sections where the eigenvalues are plotted as

set of curves in P X R, P being a one-dimensional section of P.
The special regions examined are the crossing and veering re-

gions; in the latter case, as the considered coordinate on P in-
creases, two or more curves tend to cross one another, veer away,
and then diverge. Veering regions are particularly important since,
as will be shown, they are associated with conditions of maximum
coupling between the eigenmodes.

One of the first occurrences of the word veering in the literature
is due to Leissa [1] and relates to the natural frequencies of a
clamped rectangular membrane. Several other authors analytically
found or experimentally observed veering phenomena: Doll and
Mote [2] dealing with vessels under pressure, Ramaswamy and
Marcus [3] in molecular physics, Nair and Durvasula [4] in the
study of plate vibrations, Triantafyllou [5], Russel and Lardner
[6], Behbahani and Perkins [7], Cheng and Perkins [8] in the field
of cable dynamics. The relations between eigenvalue veering and
mode localization have been investigated in particular within the
field of periodic systems perturbed by a small disorder parameter:
contributions have been given by Pierre [9], Triantafyllou [10],
and Natsiavas [11].

A precise veering criterion is found in Perkins and Mote [12];
they used a straightforward perturbation technique to study both
the case of discrete and continuous systems. However, since at
least two parameters are involved in producing the veering, this
technique fails in the vicinity of the avoided crossing. To over-
come this drawback Pierre [13] used a modified perturbation ap-
proach, while Happawana et al. [14] and Natsiavas [11] proposed
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two similar techniques of singular perturbation. Finally geometric
approaches to the problem have been given by Arnold [15] and
Triantafyllou [10].

In order to prove an optimality criteria for an electromechanical
continuous system some hints of Arnold are used here and the
direct perturbation technique [12] is extended to the case of gyro-
scopic coupling-operators. Indeed we only need a tool for veering
detection in systems with multiple degrees of freedom, as, for
instance, the electromechanical system presented in Sec. 5; we do
not need a more refined perturbation expansion since the local
(near veering) behavior of both eigenvalues and eigenvectors can
be analytically described through a change of coordinates of the
general analytical solution for the case of two degrees of freedom
(dof) systems. Hence Sec. 2 is devoted to the exact solution of a
2-dof system for all possible kinds of linear coupling: elastic,
gyroscopic, and inertial. The forced response of the system is also
analytically computed and the veering regions measured. A clas-
sification of veering is introduced and the relation of this phenom-
enon with the mode localization is enlightened. Based on these
results, a strategy for the efficient exchange of energy between
structural modes—provided they are both coupled with almost
another one electric mode—is proposed.

2 Geometric Description of Veering

A geometric description of the veering phenomenon can be
given, following the approach outlined in [15], in terms of ellip-
soids associated to symmetric positive definite eigenproblems.
Some results due to Meirovitch [16] are also needed in order to
draw the basic eigenproblem into a positive definite, symmetric
form.

The equations governing the dynamics of the considered linear
conservative system with N degrees of freedom are written as

q(0).f() € RV, (1)

A superimposed dot means the derivative with respect to time ¢,
M, and L are positive definite, symmetric matrices on
RN(PSymy), while R is a skew-symmetric matrix on RY (Skwy)
representing the presence of gyroscopic coupling. These matrices
are supposed to depend smoothly on a set of real parameters
PCRNON-D2 A simple calculation shows that the maximal di-
mension of P, i.e., the total number of independent parameters in
Eq. (1) is N(3N—1)/2; this equals the total number of independent
components in one skew-symmetric and two symmetric matrices
minus N possible choices to make dimensionless the Lagrangian
parameters.

Due to the presence of the gyroscopic addend, the eigenvalue
problem associated to Eq. (1):

MG +Rg+Lq=f(1),
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is not symmetric. Thus, apparently, the related properties, as the
eigenvectors orthogonality, do not hold. However in [16] a gen-
eral procedure is introduced to lead the eigenvalue problem (2) to
a symmetric form of size 2N, namely:
2 L
(S =, Ty, =0, p="—"T Gy,
@y
3)

T,S € PSym,y, G € Skwyy,

where S and T are two positive definite, symmetric matrices,
while the original eigenvalues and eigenvectors of problem (2) are
recovered by

N upy =y +izp,  Ny=ioy,. (4)

Hence, to every conservative linear system (1), is associated the
symmetric eigenvalue problem (3); of size 2N. Since each sym-
metric eigenvalue problem on R?" is described by an ellipsoid in
IR2V, to find double crossing points, i.e., points in the space of

parameters P where two eigenvalues coincide, is equivalent to
finding points where the associated ellipsoid has two axes of equal
lengths or in other words is an ellipsoid of revolution.

Two useful circumstances are recalled:

(1) the set of ellipsoids on R?" is a manifold £ of dimension
NQ2N+1);

(2) the set of ellipsoids of revolution, with only two equal axes,
is a finite union & of smooth manifolds in £ with codimen-
sion 2 or higher; a proof is given in [15].

An immediate consequence is that £ does not divide the space
&: thus two arbitrary points in £ can be connected through a con-
tinuous curve of ellipsoids with no equal axes. This also means
that two arbitrary sets of eigenvalues can always be continuously
connected through continuous curves of eigenvalues that do not
cross. In Fig. 1 two different sequences of ellipses (sampling of
continuous parametrized paths in &) are shown beginning and
ending in the same ellipses; namely an ellipse with an horizontal
major axis is transformed continuously into an ellipse with a ver-
tical major axis, the length of which equals the initial minor axis.
Above them, the axis lengths, meaning the eigenvalues, are cor-
respondingly drawn as functions of the increasing parameter.
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Fig. 2 Veering and crossing geometry: (a) eigenvalues as
functions of B; (b) eigenvectors components as functions of B

In the first case the sequence passes through a circle, i.e., an
ellipse of revolution; in the second there is no ellipse of revolution
whatsoever. Note that, in order to interchange the axes, the only
way to avoid the circle is to rotate the ellipse and as a conse-
quence to incline the major and minor axes. Hence the only way
to avoid a crossing point is for the eigenvectors to rotate continu-
ously; in this process certainly they reach an inclination of 45°
with respect to the horizontal, i.e., a condition of maximum cou-
pling between the initially vertical and horizontal components.

Veering is exactly the described process: in avoiding a crossing
point a condition of maximum coupling is necessarily attained
between the two involved components g; and ¢,. In the following
sections the parameters governing both the possibility of veering
and its rate (how fast the major and minor axis interchanges) are
examined in detail.

3 Exact Solution for 2-dof Systems

In this section some aspects of the free and forced oscillations
of systems under veering conditions are recalled and analytically
described. To this end a 2-dof system is considered for which the
eigenvalue problem (2) is described by the real-valued 2 X2 ma-
trices

A C 0 C 1 C
oo ) owell, Sl ) e
C, B -Cz 0 Cy 1

and uy,= (uy,; ,uy) 7. An arbitrary kind of coupling between the two
degrees of freedom is considered through the coupling parameters
C, (r=L,R,M); when these last vanish, the eigenvalues of the
systems are obviously

A= Nleo= £iNA,  Ayi= Nyfc o= £iVB, (6)

and the associated eigenvectors are U;=(1,0)T and U,=(0,1).
The two eigenvalues, corresponding to the plus sign, are plotted as
dashed curves in Fig. 2(a) as functions of the system parameter B;
due to the vanishing coupling there is a crossing at B=A. How-
ever, when at least one of C, is different from zero, the crossing is
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avoided and the two curves sharply veer and diverge; thus the
out-of-diagonal coefficients C, control whether veering can take
place or not. The analytical expression for the eigenvalues of the
system (1) and (5) follows:

D F\D*-4(C3, - 1)(C3 - AB)
)\12= +1 5
: 2(C3, - 1)

s

i ™
D=2C,Cy—A—-Ci—B.

The veering phenomenon is shown by the solid curves in Fig.
2(a): the eigenvalues loci approach, but never cross, and then
diverge, the minimum distance being attained at B=A. The region
of distortion of A, from A ; is sketched with the gray color and
its length is called o.

Also the associated eigenvectors components vary as the pa-
rameter B increases. Referring to Fig. 2(b), out of the veering
region the eigenvectors are almost near to the uncoupled case but,
when passing through the veering, there is a permutation of the
eigenvectors order. However this permutation is achieved
smoothly, as the smooth transition of the axes of the associated
ellipsoid during veering, and in the veering region all the eigen-
vector components have non-vanishing comparable values, i.e.,
there is no pure eigenvector.

The picture presented suggests a consideration of the relation
between veering and localization, see [9-11]. If one, respectively,
calls lumped and spread an eigenvector with only one relevant
component and a mode with all its components of comparable
nonvanishing value, the aforementioned behavior of the eigenvec-
tors leads to localization and globalization phenomena. In the
veering region, indeed, the modes result to be spread, while away
from veering, or in the unperturbed situation, they tend to be
lumped.

This mathematical circumstance, due to the presence of small
coupling terms, is reflected in opposite evidence from a physical
point of view: when dealing with disordered systems, the param-
eters C; physically mean the disorder levels, the unperturbed situ-
ation, to start with, has typically spatially global modes and, as a
consequence, the actual modes become local in the veering re-
gion. On the contrary, when the parameters C; physically repre-
sent coupling constants, the unperturbed situation has typically
spatially localized modes; this means that the actual modes be-
come global in the veering region.

The length o of the veering or distortion region represents cru-
cial information in many applications; it can be analytically deter-
mined solving

M= Ay
A,

where ¢ is a given small number introduced to measure the fre-
quency resolution between the coupled (\;,) and uncoupled (A})
eigensolutions. We do not compute the length o in the general
case when all the coupling parameters are present, but the values
o, (r=L,R,M), i.e., the lengths of the distortion regions when C,
is the only nonvanishing coupling parameter. Thus, for instance,
oy represents the length of the distortion region when Cr# 0 and
C;=Cy=0. For the three cases the following dimensionless ex-
pressions are obtained:

o G, on_Gll+d
247 A% T 247 A¢

& h=12 (8)

oy _ Cu1+€”

24 ¢ &

)

These results are compared assuming 7]==C%/A2=C123/A=C12V1; it is
easily seen that, under this assumption, one gets o7 <ogr<0oy.
Thus the inertial coupling—measured by Cj—involves the larg-
est veering region, while the stiffness coupling—measured by
C;—involves the smallest one. The lengths of the veering regions
are also affine functions of the dimensionless coupling parameter

b}

Journal of Applied Mechanics

100

10
1
S o1

a .
]
0.01
0.001

Fig. 3 Frequency-response function H,;(Q) for different val-
ues of the ratio B/A (black B/A=11; gray B/A=1.25; dashed
B/A=0.75)

7; hence, if 7 is small, one can mistakenly interpret a veering for
a crossing depending on frequency resolution. Certainly in many
physical circumstances the length of the distortion region can be
very small and, from an experimental point of view, hard to de-
tect; as matter of fact outside the distortion region the difference
of the coupled from the uncoupled case vanishes and, observing
the eigensolution only, the distinction of a veering from a crossing
can be very difficult.

A solution to this experimental difficulty can be found by ob-
serving the forced oscillations near the suspected veering condi-
tions. The attention should be focused on the frequency response
function:

H, (Q) = Liz(ﬂ)), where §(Q)=:J g(texp(-iQr)dt,
fi 0

(10)

obtained measuring the second component output of the same
dynamical system loaded only in its first component, f(z)
=(f,(t),0)T, and, in particular, on its behavior near the veering
condition, i.e., when both Q>—A and B—A. The frequency-
response function H,;({)), indeed, identically vanishes when all
the coupling parameters C, are zero, but is sensibly different from
zero when at least one coupling parameter is present. Figure 3
shows the graph of |H,,(Q)| for three different values of the pa-
rameters ratio B/A, being C;=C,=0 and C§=A/100. The inten-
sity and the bandwidth of the frequency response H,;({}) is sen-
sibly higher in veering conditions; actually its minimum value in
this case is given by

N O S
VA(C +4A8,8)

where &, and &, are the percentages of critical damping for the
two degrees of freedom, respectively. Measurements of Eq. (11)
allow one to estimate the value of the coupling constant C, once
an estimate of the damping coefficients by standard techniques is
obtained. The two close peaks of the frequency response function
are responsible for the well-known beating phenomenon in the
free and forced oscillations of the system; this phenomenon is
observable only in the transient response of slightly damped sys-
tems. Similar situations arise when an arbitrary combination of the
coupling parameters is present; it is worth noticing that, in case of
negligible damping coefficients, the maximum amplitude reached
by the second component and the time needed to achieve this
level of oscillation are proportional to the inverse of the coupling
parameters C,. Hence forcing one component in veering condi-
tions can result in dangerous vibrations of the other coupled com-
ponent; on the other hand, the same effect is actually exploited to
standard control techniques, see for instance [17,18].

”HZI(V"Z)HBHA = (11)
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4 Continuous Systems: Direct Perturbation of the
Eigensystem

The results of the previous section apply to systems with two
degrees of freedom; however, also when an infinite number of
eigenvalue curves are involved as in the case of continuous sys-
tems, the veering of two eigenvalue curves is locally equivalent to
a 2-dof veering: all the properties stated in the previous section
still hold locally (i.e., in neighborhood of the veering region).
Hence, when dealing with continuous systems, it is sufficient to
detect the veering between two eigencurves and then to map the
local behavior of these two curves into the 2-dof general solution
through a suitable change of coordinates. To this aim one is led to
project the involved spatial differential operators onto the eigen-
modes obtained with vanishing coupling parameters and use a
direct perturbation of the coupling parameters, as given by Perkins
and Mote [12], to ascertain the presence of veering phenomena.
The method introduced in [12] is here specialized to the case of
continuous systems with gyroscopic operators of internal cou-
pling; in the following section, the results are applied to the case
of an electromechanical system with internal resonance.

Let H be a subspace of L*(D), the space of R"-valued square-
integrable functions defined on a domain D and verifying suitable
smoothness conditions on its boundary JD; let u;,, U, € H. This
space is endowed with the usual L? inner product, i.e.
(up, w)p= [ pltpiy

The following eigenvalue problem, function of a real perturba-
tion parameter ¢, is considered: find u, € H and N, € C such that

(L(&)(up), up)p +(E(€)(up), () op

= <)\ZM(E)(Mh) + NR(€) (uy),up)p (12)
for every u, € H. Here
M,L: R—LSp R R—Lp E: R—=Lyp
e—> M(e),L(e) e~ R(e) e—E(e) (13)

are differentiable functions from the real axis R to the spaces LSp
(linear self-adjoint operators on H), Lp (linear operators on H),
and L;p (linear operators on dD). Moreover let R(0)=0. As a
consequence, the Taylor series of the involved operators around
€=0 can be calculated getting

L(€) = L(0) + L' (0) + €L"(0)/2=:Ly + €L, + €'L,,
M(e) =M(0) + eM'(0) + €M"(0)/2=:My+ M, + €M,,

R(€) = eR'(0) + €R"(0)/2=:€R| + €R,,

E(e)=E(0)+ €2'(0) + €E"(0)/2=:E+ €2, + €E,. (14)
The unperturbed e=0 eigenvalue problem is then
(Lo(Up), Upyp +(Eo(Up), U sp = AZ<M()(Uh)’ Upp. (15)

It follows that the unperturbed eigenfunctions satisfy the boundary
conditions E(U;)=0, on JD, and, since L, and M, are self-
adjoint, can be orthogonalized according to (My(U,), Up)p= Sj-
Moreover, due to the representation theorem, the set of the unper-
turbed eigenfunctions form a complete basis for L>(D); as a con-
sequence the ansatz u;,=c,, Uy can be usefully considered; here a
summation over the repeated index is understood.

In order to find the analytical relation between the eigenvalue
solution and the perturbation parameter, \;, and ¢y, are expanded
in series of €

)\h=7\0h+€)\lh+ 62)\2h+"‘,

(16)

Substituting the considered ansatz into Eq. (12), a chain of alge-
braic problems arises. The solution at order 0 is Ay,=A,, and
Conk= Opi; the solution at order € is

Chk = Copk + €Cipx + 62C2hk+"'-
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Fig. 4 Assembled plate and electric network

Ly =AM = MR,

N, =
1h 24,
(17)
0, for h=k,
Cink = AIEMlhk"'Athhk_Llhk for h# k
Ai_Ai bl 9’
where
Lyye=(L(Uy), Upp +<E(U}), Up gp.
M =M (U,),Upp,  Ryi=(R(U,),Up)p. (18)

Finally, the solution at order € is
U | (L + 3AM i+ AR ) (AGM g+ AR iy = L)

Aop=——
7oA, 4A;

+ Loy, + AiM 2m = MRow
. 2 (APM i+ MR = L) (AGM g, + AR 1 = L)

st Aj—- A} '
(19)
and
p
0 for h=k,
|
7 A2 [AiM ok + ApRop = Lojy + E
A - A j#h
% (Lyj - AiMljk_ Athjk)(AiMlhj"' AuR ;= Lyyy)
com=$ Ap- A7
+ Ly = AgM 1, = AR )
Riyw  AM e+ ARy — Ly,
% (Mlhk"'ﬂ"' WM 1nk 21 12hk IIk)
24, AZ_A2
\forhik,
(20)
where
Loi={Ly(U,), Upyp + (Ea(Up), Up s,
Mo={M(U}),Upp,  Ropi=(Ro(U}), Up)p. (21)

The interaction between two eigenmodes and the effects of the
perturbation are described by the matrix:

(22)

Recalling the assumed ansatz, wu,=c,U;, a nonvanishing ¢,
means a nonvanishing projection of the perturbed first mode on
the second unperturbed mode. This implies an energetic exchange,
proportional to the perturbation, in the time evolution of the U,
and U, components.

Chk*=Chk = Opk = €Cpp + 62C2hk-

5 An Electromechanical System With Gyroscopic
Coupling

The results obtained in Sec. 4 are used to derive the qualitative
behavior of an electromechanical system under two different
boundary conditions. The system, presented in [19], is a Kirchhoff
plate coupled with a set of distributed piezoelectric actuators in-
terconnected through an electric transmission net. Figure 4 shows
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Table 1

Plate modes labeling

h=12 3,4 56 7,8 9,10 11, 12 13, 14 15, 16 17, 18
i, 1 1 2 2 1 3 2 3 3
1 2 1 2 3 1 3 2 3

a sketch of the assembled structure: the gray and black boxes
respectively represent the piezoelectric patches and the electric
impedances among them.

The plate deformation is described through the transverse dis-
placement v of the plate mid-plane, while the electric state in the
transmission net through the time-primitive ¢ of the electric po-
tential.

The efficiency of this system is based on a veering condition;
indeed the maximum exchange of energy needed to achieve an
efficient control action is obtained tuning the electric eigenfre-
quencies to the values of the mechanical ones (see Sec. 2). The
system free oscillations are governed by the following set of linear
partial differential equations:

aAAv +7 - yAdp=0,

—BAG+ P+ YAV + S+ SyAv =0, (23)

where a, B, vy, and & are dimensionless parameters, A is the La-
placian operator, and AA the double Laplacian operator related to
the Kirchhoff model of the plate. The piezoelectric effect induces
a gyroscopic coupling between the standard Kirchhoff plate equa-
tion and the standard Laplace equation for the electric net.

In this case D is the rectangular domain [0,1]X[0,d] and the
functions u and U, defined in Sec. 4, are R%-valued square inte-
grable functions on D. Moreover the coupling y and the electric
dissipation & are supposed to be of the same order of magnitude
setting y=¢€ and S=€p. In view of Eq. (12) the following differ-
ential operators L(e), M(e) and R(e) are obtained:

__(aAA 0 ) _(1 0) 3 (o —A)
L(e):= Coh —pA) M(e):= 0 1) R(e).—eA o)
(24)

5.1 Simply Supported Boundary Conditions. The plate is
considered to be simply supported and electrically grounded at the
boundary so that

1 0
0 1
E(e) = P for y=0,d,
— 0
x>
(25)
1 O
0 1
E(e) = i . for x=0,1.
ﬁyz

The order O solution is easily found as follows

22
Uy, = eq sin(iymx)sin(j,myld), A" = 774\v"a<i2 + %) ,

h=1,3,5,...,

2

o . ol 2, J
Uy =€ sm(thwx)sm(jhwy/d),[\ﬁf) = ﬂlvﬁ(tﬁ + d—g) , (26)
where ey={1,0} and e¢;={0,1} form the canonical basis in R,; ¢
and ey, respectively, mean a totally mechanical and electric nature
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of the eigenfunction. Hence for these boundary conditions (25) the
mechanical and electrical eigen-functions share the same spatial
modal shapes at order 0. The modes are labeled according to Table
1.

The odd values of the index & are therefore related to mechani-
cal modes while the even are related to electrical modes.

Since E and M do not depend on the perturbation parameter,
the matrices 2,, M, B, and M, vanish; moreover L; and R,
vanish because L'(0)=0 and R”(0)=0. Hence the coupling is gov-
erned by the operators R; and L,.

Now consider two arbitrary modes, say & and k, of the system
(23).

(a) If the modes are both mechanical (h and k are both odd),
then there is no interaction since both Ry, and L,;; van-
ish.

(b) If the modes are both electrical, then R;;=pdu p
=de/4, and from Egs. (17), (19), and (20)

P [

N=A,— e+ E——, =0 27

n=>8nT €y 4A, k= Onk (27)
thus the two eigenvectors remain unchanged, while the
eigenvalues are modified by the presence of the dissipa-
tion.

(c) If one mode is mechanical and one electrical, there is an
interaction only if k=A+1 or in other words if the modes
share the same spatial modal forms; otherwise the cou-
pling between the two modes is again vanishing. Set h
—m and k=h+1— e; then

lee=<Rl(Um)7Ue>D=_ Rlem _lee’
(28)
wde( 5 Ji
L2me=(L2(Um)’Ue>D=_ li+_g ’ LZemzo'
4 d
(29)

Substituting these results in Egs. (17) and (20), the dependence
of the eigenvectors on the coupling parameter € is derived up to
the second order:

_ 1 _ 1
Cne = m(fAleme - 62L2me)s Com = M(EAelee) .

e m

(30)

This proves that the two eigenvectors are rotated by the perturba-
tion, especially when the A?—Afn is small. This rotation with re-
spect to the unperturbed eigensolutions signifies that the perturbed
eigenvectors have both electric and mechanical components; for
important physical implications of this fact the reader can refer to
[19,20].

The singularity for A,— A,, is due to the use of a straightfor-
ward perturbation and can be avoided using more complex tech-
niques, such as a modified version of this method as in [9] or a
matched asymptotic expansion as in [11]. However, since the in-
terest is only devoted in detecting the veering, this complexity has
been intentionally avoided; moreover the local behavior of eigen-
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1m/le

Sm/le

Eigenfrequencies

0 5m/5e

Bla

Fig. 5 The eigenvalues for h=1, 5 in the clamped case of boundary conditions.
Darker regions indicate veering phenomena.

frequencies and eigenvectors is locally equivalent to the 2-dof
case which can be analytically described as in Sec. 2.

5.2 Clamped Boundary Conditions. The plate is considered
to be clamped on all sizes and electrically grounded at the bound-
ary so that

1 0
0 1
E(e) = p for y=0,d,
— 0
dx
(31)
10
0 1
Z(e) = for x=0,1.
J
— 0
dy
The zero-order solution is now given by
U, = eofy(x.), AE’") = \“‘Zgh,
h=1,3,5,...,
— 2
Uh+l =e Sin(ih’ﬂ'x)sin(jh’ﬂ'y/d), A;le) = #V’ﬂ(li + d_g) N
(32)

where f;,(x,y) are the eigenfunctions of the double Laplacian on a
plate with clamped sizes and s, are the associated eigenvalues.
If pairs of purely electrical or purely mechanical modes are
considered then, as before, the zero-order eigenvectors are not
modified [cases (a) and (b) in Sec. 5.1]. On the contrary, if the two
considered modes (4 and k) are mechanical and electrical, the
coupling does not vanish only if k=h+1 as before. Indeed, since
the electric and mechanical eigenfunctions do not have the same
spatial modal shapes, the matrix ¢j; has many nonvanishing en-
tries for each row. This means that the mode to mode interaction is
not anymore one-to-one. Thus each mechanical or electrical mode
has a nonvanishing coupling with several other modes and each
branch of the root locus presents several veerings with the other
branches. In Fig. 5 the eigenvalues curves are represented relative
to two sets of strongly coupled modes namely the first and fifth
modes of the clamped plate—displayed through three-dimensional
plots—and the first and fifth modes of the electrically grounded
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net—displayed through contourplots.

The gray-level intensity of the curves in Fig. 5 is proportional
to the ratio between the out-of-diagonal and in-diagonal terms in
the eigenvector matrix: a veering is hence highlighted by a darker
region. Three evident veerings are present in Fig. 5 as the param-
eter B/« is varied: between the first mechanical and electrical
modes (1m/1e), the fifth mechanical and electrical modes (5m/5¢),
but also between the fifth mechanical and the first electric modes
(5m/le). A fourth veering is hardly seen between the curves Im
and Se.

Since in veering conditions an initial amount of mechanical
energy transforms back and forth into its electric form, a suitable
time-dependent tuning of the frequency ratio B/« allows for en-
ergetic exchanges not only between mechanical and electric
modes but also between two arbitrary mechanical modes provided
they are coupled with the same set of electric modes. This fact
does not contradict the aforementioned assertion on the coupling
of purely mechanical modes, valid only for a fixed value of the
frequency ratio.

Suppose, indeed, that the initial energy is given only in the first
mechanical mode; if the frequency ratio 8/« allows veering with
the first electric mode (1m/le), after a certain time the energy is
stored only in this last mode. Now shift the frequency ratio 8/ a to
the value 5m/1e; the energy flows in the fifth mechanical mode; an
additional shift into a region with no veering can confine the en-
ergy into the fifth mechanical modes. It is worth noticing that,
from a practical point of view, the frequency shifts are easily
achieved by an electric tuning of a simple potentiometer.

6 Concluding Remarks

The main geometrical properties and dynamical implications of
the veering between two eigenvalue curves have been studied
considering an arbitrary elastic, inertial and gyroscopic coupling.
Through the use of the ellipsoid associated to positive definite
symmetric eigenproblems it is shown that in order to avoid a
crossing point a condition of maximum coupling must be
achieved.

The case of two degrees of freedom systems is then analytically
solved; as a matter of fact the veering of two eigenvalue branches
is locally equivalent to the 2-dof case, also when an infinite num-
ber of degrees of freedom is involved, as in continuous systems.
Depending on the amplitude of the veering region, it is sometimes
difficult to distinguish a veering from a crossing using only the
eigensolution in a discrete number of parameter values. Mean-
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while, this experimental difficulty can be solved observing the
forced undamped response of the system since in this case its
response, in the presence of veering, sensibly differs from the
uncoupled case (crossing).

Veering governs the coupling between the involved modes:
when these modes are spatially global, localization occurs in the
veering region; on the contrary when these modes are spatially
localized in the veering region global motion arises.

The direct perturbation technique [12] has been applied to veer-
ing detection in an electromechanical system governed by some
linear PDEs with a gyroscopic coupling operator. Considering the
coupling coefficient as perturbative parameter and using, as func-
tional basis, the uncoupled eigenmodes, the presence of veering
has been ascertained and the main dynamical features of the sys-
tem caught. It is shown how a multiple veering allows for ener-
getic exchanges between uncoupled modes, achieved through a
simple time-dependent tuning of a resistance. This phenomenon
could have useful applications in several disciplines.
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Data and Dimensional Analysis

Scaling laws provide a simple yet meaningful representation of the dominant factors of
complex engineering systems, and thus are well suited to guide engineering design.
Current methods to obtain useful models of complex engineering systems are typically ad
hoc, tedious, and time consuming. Here, we present an algorithm that obtains a scaling
law in the form of a power law from experimental data (including simulated experi-
ments). The proposed algorithm integrates dimensional analysis into the backward elimi-
nation procedure of multivariate linear regressions. In addition to the scaling laws, the
algorithm returns a set of dimensionless groups ranked by relevance. We apply the algo-
rithm to three examples, in each obtaining the scaling law that describes the system with

minimal user input. [DOL: 10.1115/1.1943434]

1 Introduction

In engineering design, we are constantly faced with the need to
describe the behavior of complex engineered systems for which
there is no closed-form solution or exhaustive analysis. This usu-
ally leads to a tedious, time consuming, and detailed study of the
engineering process in question, delaying the overall process of
design and limiting the total number of possibilities that can be
investigated. For example, the design of a welding procedure in-
volves so many parameters that it can seldom be predicted reli-
ably; therefore, extensive experimentation must take place in or-
der to determine an ideal process setup. A set of simple and
intuitive design laws based only on the most relevant parameters
would be of enormous help in this case. Scaling laws in the form
of power laws, which we will simply call scaling laws, are par-
ticularly well suited for this purpose.

Scaling laws are ubiquitous in engineering. In fact, they have
been used to explain the behavior of many physical, biological
(e.g., [1,2]), psychophysical [3], geophysical (e.g., [4,5]), Internet
traffic [6], and even economic systems [7]. A broad sample of
problems that can be described with such scaling laws is presented
in [8]. Segel [9] provides a good overview of simplification and
scaling. Some reasons for the wide applicability of power law
models in engineering are: (i) the combination of units has the
form of a power law, (ii) the expressions of many physical phe-
nomena have the form of power laws as noted above, and (iii)
many empirical regressions of engineering data in log-log plots
tend to give a straight line, which corresponds to a power law.

Scaling laws are of enormous utility during the early stages of
design, when the configuration of a system and the choice of
materials are still uncertain. In this case, they provide quick esti-
mations of the feasibility of a design, help determine optimal
sizes, and contribute to decisions about configuration and materi-
als. These laws are also useful for control systems and for
decision-making algorithms, predicting the behavior of a system
much faster than computationally intensive models such as finite
element analysis or computational fluid mechanics. The design
and interpretation of physical models of reduced size, such as
reduced-scale aircraft in wind tunnels, are based on scaling laws.
When experimental databases or numerical models exist, scaling

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division, November 14, 2003; final
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accepted until four months after final publication of the paper itself in the ASME
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laws can be used to generalize and extrapolate the results ob-
tained. For existing machines, scaling laws are useful for setup
and tuning operations.

Our work aims at facilitating the process of engineering design
by providing a computational tool that derives the best power law
from experimental data. We propose the algorithm SLAW (Scaling
LAWSs). This algorithm combines a linear regression model of the
experimental data with physical considerations of the process,
namely, that the units of the resulting model match the units of the
dependent variable. We look for the power law model that mini-
mizes the prediction error only among models that have the cor-
rect units. The output of the algorithm is a physically meaningful
and simple power law, representing the process and a set of di-
mensionless groups ordered by their relevance to the problem.
The user input in selecting the simple model, and the ability to
correct it further using the dimensionless groups, provide the
means to construct a model that achieves the desired balance be-
tween accuracy and simplicity. An early version of this algorithm
was presented in [10]. SLAW grew from that version by incorpo-
rating: a rounded model output, where all coefficients are fractions
typical in the equations in physics and engineering; user input to
select the best scaling law; and ranked dimensionless groups that
explain the residual error. In this work, we call “model” any scal-
ing law that captures the main behavioral trends of a process as a
function of the parameters of the problem; this should not be
confused with other ways of representing the problem, such as
finite element models.

The sLAW algorithm differs from classical dimensional analysis
in that it selects the scaling law with the smallest predictive error
out of all the dimensionally correct models. There are computa-
tional implementations of dimensional analysis, such as that de-
scribed by Kasprzak et al. [11], which are able to construct dimen-
sionally correct models and check the completeness of the set of
variables. SLAW differs from these approaches in the systematic
search for an expression involving the smallest acceptable number
of variables.

SLAW also differs from other statistical simplifications, such as
the principal directions of the matrix of correlation, in that these
other approaches, besides not necessarily providing the correct
units, reduce the mathematical complexity of the problem but still
consider all physical parameters, regardless of their importance.
Previous works that combines linear regressions and dimensional
analysis, such as landmark work by Vignaux and Scott [12], Vig-
naux [13], Li and Lee [14], and Dovi et al. [15], all use dimen-
sionless groups determined a priori. In contrast, SLAW automati-
cally generates the ranked dimensionless groups.
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The automatic determination of formulas, such as scaling laws,
from data has been an active area of research in the artificial
intelligence community. Important examples of this research are
the algorithm BACON due to pioneering work by Bradshaw et al.
[16], algorithms ABAcuUS [3,17] and COPER [17], and recent work
by Washio and Motoda [3,18]. Important differences that the al-
gorithm proposed here has with both BACON and ABACUS are that
these latter algorithms produce only scaling laws with integer ex-
ponents and require that the data vary one variable at a time. The
algorithm COPER and the work by Washio and Motoda differ from
the current work in that they do not explicitly construct a scaling
law that is the simplest with respect to some criterion, and the
dimensionless groups obtained are not necessarily ranked by rel-
evance to the model.

In Sec. 2, we describe the assumptions made on the physical
process and the main ideas in the methodology. In Sec. 3, we
present the algorithm SLAW. We apply this methodology to three
different examples: a pendulum, ceramic-to-metal joining, and the
“punch test” (a standard test used to determine mechanical prop-
erties of materials). We describe the examples and present the
results obtained with our algorithm in Sec. 4. In Sec. 5, we present
the conclusions of this work.

2 Methodology

2.1 Scope of Methodology. To illustrate this discussion, con-
sider the problem of joining a ceramic cylinder to a metallic cyl-
inder, as pictured in Fig. 1.

One of the quantities of interest in this problem is the volumet-
ric strain energy in the ceramic, which can be expressed as

u(X,2) = YX)u"(X,2) (1)

Here, u(X,Z) is the volumetric strain energy at each point in the
ceramic and depends on the problem parameters X and other vari-
ables Z. In this example, problem parameters X can include the
radius of the cylinders r, the yield strength of the metal oy, and
the elastic modulus of the materials E, and E,,, while other vari-
ables Z typically represent the space and time coordinates of a
point in the cylinders. The quantity Y is a characteristic value that
only depends on problem parameters and has the same units as u.
The function u” is a dimensionless function that shows the volu-
metric strain energy variations relative to the characteristic value.

Our objective in this paper is to obtain a simple yet meaningful
expression for Y from experimental data, as the characteristic
value captures important trends of the quantity of interest. For
example, in Sec. 4 we show that the characteristic value of the
volumetric strain energy in ceramic-to-metal joining as a function
of the parameters is Y =o‘2yr3/ E.. To use a nomenclature that is
consistent with linear regression literature, we will also refer to
the characteristic value Y as the dependent variable and to the
parameters X as the independent variables.

Dimensional analysis states that the characteristic value Y can
be decomposed in one power law expression with the same units
of u and a function f of m dimensionless groups II;,...,II,,
which also have a power law expression as a function of the
parameters. If we assume that there are n parameters for the prob-
lem X;,...,X,, this means that

Y =a,| [ X, .. 11,) 2)

J=1

with Hiza[H;?:lefJ. For simplicity, we will assume that the func-
tion f can be approximated by a power law. This is reasonable,
given that most of the behavior of the dependent variable is typi-
cally captured by the power law expression and f shows small,
smooth, and monotonic variations within a regime. Therefore, we
can write Eq. (2) as
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Fig. 1 Geometry of the ceramic and metal parts to be joined
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X 3

n
=a H ijfl"a"f (4)
j=1

with a=II7" a;. Equation (4) is a valid model for the problem
under two additional assumptions on the system, which are stan-
dard assumptions in dimensional analysis: (i) We assume that at
least all parameters that determine the problem are considered.
This assumption is also necessary in the analysis of regressions.
Omitting a relevant parameter can result in ignoring a dominant
effect and, thus, missing the correct model. Considering more pa-
rameters than are strictly necessary is not a problem, since SLAW
can efficiently discard the less relevant parameters. (ii) We assume
that the physical system is studied under a single regime. This
means that the same physical factors (there is no need to know
exactly which) are dominant for all of the observations used to
build the input data set. This implies that f is of the order of
magnitude of 1.
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An important observation, which is enforced explicitly in the
algorithm, is that the model given by Eq. (4) has the same units as
the characteristic value Y. This additional constraint, denoted the
units constraint, is expressed by

n
units of ¥ = H (units of X],)E,ﬁoa;,- (5)

j=1
For this approach to be well defined, it is necessary that some
combination of the parameters considered can yield the units of

the characteristic value, and thus it is possible to satisfy the units
constraint.

2.2 Constrained Linear Regression. For any application, the
model postulated is faced with uncertainties that arise, for ex-
ample, from working with experimental data or considering only
n independent variables and disregarding the possibly tiny effect
of other variables. By taking the logarithm of Eq. (4), and consid-
ering the existing uncertainties in the model, we can express the
model as

n

log Y=PBy+ >, BjlogX;+¢ (6)
j=1

where the coefficients are Sy=loga and B;=32a;;, and & is an
error term that captures the model uncertainties. Additive errors in
logarithms of measurements is a common assumption in fitting
scaling laws, see [15,19], and it is justified by Benford’s law
[20,21], which states that variations of physical quantities are
evenly distributed in a logarithmic scale.

Considering p experimental observations of the physical pro-
cess, we obtain estimators of the coefficients of Eq. (6) using
standard linear regression machinery. We denote the p observa-
tions of the dependent variable Y by yy,...,y,, and the observa-
tions for the jth independent variable X; by xyj,...,x,;. We as-
sume independent experimental observatlons which 1mphes that
observed errors €y, ...,g, are independent identically distributed
(IID) random variables, where &;=log y;— By~>7_, Bjlog x;;. Using
matrix notation, we have

log y,
y= : , and X=
logy, log x,,,

The estimate for the coefficients in model (6) that minimizes the
residual sum of squares is the solution to the system of normal

1 logxy log x4,

I logx,

equations )?U?,B:)?}I where the superscript 7 denotes the trans-
pose of a matrix. We denote this estimate by the n+1 dimensional

vector B=(B, ...
able becomes Y= eﬁOH" Xﬂ/

The estimate ,B however will generally not satisfy the units
constraint. Therefore, we have to select the coefficients that mini-
mize the residual sum of squares only among those that satisfy Eq.
(5), which as we explain below is equivalent to a linear constraint
of the form RB=b. With this additional constraint, the estimate of
the coefficients in model (6) that minimizes the residual sum of
squares and satisfies the units constraint is the solution to the
problem

,8,,) and the estimate of the independent vari-

ming(7 - XB)' (¥ - XPB)
(7)
st. RB=Db

To represent the units constraint in linear form, assume that ¢
reference units (m, kg, s,...) are the building blocks for the units
of the dependent and all independent variables in the problem.
The units constraint can be expressed by RB=b, where b is a
g-dimensional vector such that b; is the exponent of reference unit
i in the units of the dependent variable Y, and matrix R is g by
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n+1 such that R;; is the exponent of reference unit i in the units of
variable Xj, for j=0,1,...,n. Note that we include a variable X,
which accounts for the constant dimensionless term, thus R;y=0
for all i. For example, this notation implies that Ra=b, for a’
=(a0,a01 seee ,ao,,).

2.3 Generation of Dimensionless Groups. The solution to
problem (7), denoted with the vector ,80=(ﬁ8, ,30 ,...,/3’2), esti-
mates the coefficients that construct the model in Eq. (4). This
solution, however, can have all coefficients different from zero,
which leads to a model that, although satisfies the units constraint
and has minimal residual sum of squares, is not simple as it in-
cludes all independent variables and lacks physical interpretation.
We aim to separate this complicated model into a simpler power
law and dimensionless groups, as in Eq. (3). For this, consider 8
another n+1 dimensional vector that satisfies the units constraint
and is simpler, i.e., has few nonzero coefficients, and let 6= ,BO
- B Using this decomposition, we express the model with 8 in
the following form, in line with Eq. (3):

n n n
A 0 0 > 2
V=eh[[ X =eh] ] Xff(e’sol_[ Xff)
=1 = =1

The first factor in the right side of this equation corresponds to a
simple power law as ,é has few nonzero coefficients and, since
R 6=0 by construction, the second corresponds to a dimensionless
group.

The proposed algorithm simplifies the model, and in the process
identifies the dimensionless groups by removing independent vari-
ables from the model one at a time. A variable X; is removed from
the model by forcing the solution to satisfy §;=0, which is en-
forced by the linear constraint ejﬁ 0, where e; is the jth canoni-
cal vector in n+1 dimensions. After k iterations of the algorithm,
exactly k independent variables, let us say Xips oo Xips have been
removed from the model. Therefore, feasible models now must
also satisfy eT,B—O N ,B 0, which can be written in matrix
form as M;3=0 for the k by n+1 matrix Mi=[e; ... e; 1”. For
each iteration k, let 8¥= (,36, .. Bfl) be the solution to Eq. (7) that
satisfies, in addition, M;8=0. To remove an additional variable X;
with 85+ 0 from the model, we simply add the constraint 8;=0 to
the problem. Therefore, the reduced model is given as the solution
to the optimization problem

z(j) = ming(5 - XB) (7 - XB)

s.t. RB=b

(8)
Mkﬁz 0

,3]':0

Equation (8) minimizes a strictly convex function over linear con-
straints and therefore has a unique solution that can be computed
solving the first-order optimality conditions, which for this prob-
lem are a linear system of equation [22].

From all variables with ,8"#0 we eliminate at iteration k+1
the variable 7;,;, which makes zk(]) smallest. The resulting model,
with coefficients B!, best fits the given data in a least-squares
sense, satisfies the units constraint, and has k+1 coordinates equal
to zero. This last constraint is encoded in the matrix M;,,
=[M7 K€i, ]] After eliminating k parameters from the model, we
obtain a s1mp11ﬁed model B and the dimensionless groups &
=p~1-g for i=1,...,k. These vectors satisfy S°= E:: 5+~
which implies the following expression:
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The process of sequentially eliminating variables is possible while
the linear system of constraints has a solution. We show below
that the dimensionless groups generated & are linearly indepen-
dent; therefore, the number of iterations can be at most n+1
—rank(R).

To see that &', ..., 55 are linearly independent, assume without
loss of generality that coordinate k is eliminated to construct S,
then by construction we have that 5" 0 for all j<k and (5k #0,
thus the matrix [&', ..., 5] is lower trlangular with nonzero dlag-
onal elements, Wthh 1mphes the linear independence. In addition
we know there are rank(R) linearly independent rows of R, and
thus the vector space orthogonal to the rows of R is of dimension
n+1—rank(R). Since all & are orthogonal to the rows of R and
linearly independent, there can be at most n+ 1 —rank(R) of them.

The process of generating solutions 8%, each with k variables
removed, can be interpreted as backward elimination for linear
regression, see [23]. Here, the backward elimination is applied to
a linearly constrained linear regression problem.

3 Algorithm SLAW

The algorithm SLAW (Scaling LAWSs) uses experimental data,
information regarding the units of variables, and information
about the accuracy needed. It outputs a physically meaningful
simple model and a set of dimensionless groups that explain the
dependent variable in order of importance.

This algorithm can be broken down into four steps:

1. Find the sequence of models {8} through the backward
elimination process that solves Eq. (8).
2. Determine, with user input, which model of the sequence

{B"} to select, say its f3. A

3. Round the coefficients in 3, obtaining a physically meaning-
ful simple model S8".

4. Perform backward elimination again, to identify dimension-
less groups in what is not explained by 8.

Step 4 is needed to identify the correct dimensionless groups
because the rounding procedure in Step 3 creates a model 8 that
is slightly different from the model derived in the original regres-
sions. This second application of backward elimination has a sig-
nificant difference from the first. While the goal of the first appli-
cation of backward elimination is to find the smallest meaningful
scaling law, we start the second set of iterations with a scaling law
already in place, B". Although the change in scaling law is typi-
cally small, the dimensionless groups corresponding to the new
law are not necessarily the same, and we perform another back-
ward elimination to find them. The goal of this second backward
elimination is simply to find a scaling law for the error between
the input data and the rounded scaling law, characterized by &
=B°—B". We now describe each step of the SLAW algorithm.

3.1 Model Reduction Algorithm. The following algorithm
identifies the dimensionless groups of the linear regression model
in order of significance to the dependent variable. The inputs are
the experimental data and units constraint data; the output are the
sequence of estimators {8} and dimensionless groups {&'}.

—Algorithm MODEL REDUCTION X, V,R,b):

Step 1: Solve (7), let B° be the solution. k=0.

Step 2: Find the coordinate j, that minimizes z:(j) [problem
(8)]. Let B! be the solution to z,(ji). Let &'=p¢~ g1

Step 3: Let k=k+1. Repeat Step 2 while some variable can be
eliminated from g*.

—Output { Bk}n —rank(R) and { y}n rank(R)
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3.2 Selecting Model. By definition, 8° defines the model that
best explains the dependent variable out of the sequence generated
by the DIMENSION REDUCTION algorithm. This solution has the
smallest residual sum of squares (RSS) but is not a simple solu-
tion, as it uses all n variables and constant term. In contrast,
Br1ank(R) i the simplest solution that satisfies the units constraints
and at the same time has the largest RSS. User input is used to
select a model that balances simplicity with accuracy.

The inputs are the experimental data, the sequence of estimators
{B"}, and a user-supplied tolerance TOL. The output is the estima-

tor ,[3 the simplest estimator in the sequence with average relative
error <TOL.

— Algorithm Selection (X,7,{8*}, TOL)

Step 1: Let 3 be the model 5 with less coefficients # 0 that
satisfies

= \/ }7 (7-XB"(5-Xp") < TOL

—Output: f%

The quantity «; used to determine the cutoff is the square root
of an average RSS of the linear models considered. We opted for
this criteria due to the engineering interpretation of this quantity,
outlined below. There are a number of classic statistical tests, such
as the F test, that are used in linear regressions. However, such
tests do not have the direct interpretation of «;, and do not apply
to the linearly constrained regressions we are considering; addi-
tionally, they require extra assumptions on the distribution of the
errors.

Note that if we let y
Ayk=yk—y, then we have

¥ be such that log §* X,Bk and define

s

=—(7-XBY (5 - Xm—I;E (log y; — log 7)°
i=1
1< A ;
P o Yi

Since for small values of Ay¥/y; we have that log(1+(Ay*/y,)
~(Ayf/ y;), an interpretation for the cutoff criteria of algorithm

selection is that the quantity ai corresponds to the average
squared relative error

P k P k\2
12 A 12 Ay;
P i=1 Vi pi=1 Vi

We refer to o as the average relative error (avg. RE).

'E

3.3 Rounding the Model. The input to function Round is an

estimator ﬁ and its output is a related estimator 3" that satisfies
the units Constraints has all coefﬁcients rounded to a number with

1
decimals, either 0, 7 4, 3, 7 3, or 4, and minimizes the increase in

error. Note that since 0 is a round number, 8" has all the zeros of
B. The choice of using quarters and thirds as the finest division
strikes a balance between independence from experimental error
and physical meaning. A large number of known laws for engi-
neering problems, probably the vast majority, involve exponents
consistent with this choice. For example, scaling laws for a
boundary layer involve whole numbers and halves in the expo-
nents, and if the boundary layer involves heat transfer, we obtain
exponents with thirds [24]. Additionally, rounding the exponents
reduces their variation with experimental error.

To obtain 3", the algorithm sequentially fixes the closest expo-
nent to its rounded version, and solves a linearly constrained lin-
ear regression similar to problem (8). The problems solved at each
iteration include the units constraint and linear constraints that fix
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Fig. 2 Representation of a simple pendulum and its elements

coordinates to their rounded values. This is iterated until all ex-
ponents are fixed; the resulting 8~ satisfies the units constraint, as
this is enforced at very iteration.

3.4 Overall SLAW Algorithm. The overall algorithm performs
the four steps outlined at the start of this section. For an input of

statistical data ¥, X, and units constraint R and b, the algorithm
SLAW does

Step 1: Run Dimension Reduction ()? ,¥,R,b), and obtain the
sequence {8}, {F}.

Step 2: Run Selection (X,7,{8",TOL), and obtain ,@

Step 3: Run Round (), obtaining 8.

Step 4: Run Dimension Reduction (X, v —X,B*,R,O), to obtain
{Bk}k and {y}k-

—Output: B° and {&).

4 Examples

In this section, we present the results of applying the algorithm
SLAW to three different physical experiments: a pendulum, the
bonding of ceramics to metals, and a “punch test” recently devel-
oped at Exponent, Inc. As we show below, in each case SLAW
“rediscovered,” with a minimum of human input, the scaling laws
that match previous analysis of the problem.

The input files for these three examples can be downloaded
from [25]. For each problem, there are two text input files, one
containing the experimental data and the other describing the units
matrix.

4.1 Period of a Pendulum. Figure 2 shows a schematic of a
simple pendulum and some of its elements. When the only rel-
evant force acting on the pendulum is the force of gravity, and for
small oscillations, the period of the pendulum is given by the
following formula:

T= ZWV’% 9)

where T is the period (the dependent variable in this problem), / is
the length of the string, and g is the acceleration of gravity. In
what follows, we denote by T the observed period, and by Tipeqry
the quantity in Eq. (9). We now use the SLAW algorithm to dis-
cover this relationship, assuming that the period of the pendulum

Table 1 Parameters involved in the pendulum example

Symbol Units Description

T s period (dependent variable)

m kg mass of the bob

1 m length of the pendulum

0 rad initial angle

d m characteristic dimension of the bob
p kg/m? density of fluid surrounding the bob
g m/s2 acceleration of gravity

is determined by the parameters in Table 1.

These parameters account not only for inertial forces and grav-
ity, but also for drag, rotational inertia of the bob, and initial
angle. If these last three effects are neglected, dimensional analy-
sis alone can solve Eq. (9), with the exception of the constant,
which can be estimated by a single experiment. When these three
effects are considered, dimensional analysis alone does not pro-
vide a unique formula. In this work, we considered these effects,
which make the problem more complex, but more representative
of real situations.

4.1.1 Input for sLAw. The input for SLAW are the set of experi-
mental data and a matrix describing the units of the dependent and
independent variables. The set of experimental data consists of a
table listing the measured value of the period for different values
of the parameters. Table 2 below displays the matrix R, which
contains the units of the dependent variable and the parameters.
This matrix was constructed using the units listed in Table 1; each
element corresponds to the exponent of a unit (listed in the left
column) for a given parameter (listed in the top row).

4.1.2  Output From sLAw. To illustrate the workings of SLAW,
we here illustrate the output of the different steps of the sLAW
algorithm. Table 3 displays the result of the iterations to obtain the
initial simplest, meaningful, and dimensionally correct scaling
law.

In this table, the first iteration corresponds to a power law with-
out the units constraint. This model corresponds to what is typi-
cally used in engineering to fit experimental data. It is the most
mathematically accurate of all possible power laws; however, it is
physically incorrect, as the estimates of the model do not have the
right units. The second iteration is a modification of the first
power law, chosen to provide the correct units with the minimum
increase in fitting error. These first two iterations use all param-
eters of the problem, regardless of their relevance. The third to
sixth iterations remove the least significant independent variables
one at a time; for example, the exponent for @ in the third iteration

Table 2 Matrix of reference units R for the pendulum example

Units T m ! [% d p g
m 0 0 1 0 1 -3 1
kg 0 1 0 0 0 1 0
s 1 0 0 0 0 0 )

Table 3 Results of Step 1 of sLAw, for the pendulum example

Iter. Param. Constant m 1 6 d p g avg. RE
1 6 0.117 0.000 0.502 0.023 —0.004 0.021 0.266 0.0197
2 6 2.050 —~0.021 0.506 0.025 0.057 0.021 —~0.500 0.0197
3 5 1.998 -0.016 0.500 0.000 0.049 0.016 -0.500 0.0197
4 4 1.861 —~0.006 0.517 0.000 0.000 0.006 —~0.500 0.0200
5 3 1.872 0.000 0.500 0.000 0.000 0.000 —~0.500 0.0260
6 2 0.000 0.000 0.500 0.000 0.000 0.000 -0.500 1.8582
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Table 4 Result of Step 3 of sLAw, for the on pendulum example

Iter. Param. Constant m 1 4 d p g avg. RE
1 6 ~0.001 0.000 0.002 0.023 —0.004 0.021 —0.002 0.020
2 5 0.178 -0.021 0.006 0.025 0.057 0.021 0.000 0.021
3 4 0.195 —~0.021 0.000 0.022 0.064 0.021 0.000 0.022
4 3 0.125 -0.016 0.000 0.000 0.048 0.016 0.000 0.026
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.044

is set to zero after determining that the corresponding average
relative error in this case was smaller than that of setting to zero
the exponent of any other parameter. The sixth iteration is the
minimum expression that provides the correct units after remov-
ing parameters in this order. Since the average relative error (avg.
RE) jumps from 2.6% to 185.8% in the last iteration, we decide to
use Iteration 5 as the basis of the final scaling law. This corre-
sponds to the simplest model that provides an acceptable error.
The selection of this model constitutes Step 2 of SLAW and it is
automatically performed using a criteria that the average relative
error (avg. RE) has a tolerance of TOL=0.2.

The behavior of exhibiting dramatic increases in the fitting er-
ror of models as variables are removed is the norm, not the ex-
ception, for physical processes that can be described with scaling
laws. In this case, there is little error as the less relevant terms are
discarded, and the error jumps suddenly when one of the essential
terms of the power law is eliminated. This sudden jump in error
can often be used by SLAW to automatically identify a cutoff point
in the simplifications. The scaling law automatically obtained by
SLAW for this problem is

1.872 \% (10)
where T ow; 18 the estimation of the period based in this scaling
law. The constant factor obtained is within a 3% error from the
exact coefficient 277, and the functional dependence is the same as
predicted by theory in Eq. (9).

Table 4 displays the iterations that determine the dimensionless
groups ranked by relevance. Each line of this table corresponds to
a dimensionless group that can be used to improve the predictions
of the scaling law.

The first iteration corresponds to fitting the error of the scaling
law (10) with a dimensionless group that considers all parameters.
The fourth iteration corresponds to the simplest dimensionless
group obtained after eliminating the less relevant parameters:
I1,=(pd?/m)®016. The last iteration (the fifth in this case) always
corresponds to a constant numerical factor. In this case, this factor
is one (this row contains only zeros) because the scaling law ob-
tained in the first iteration already has a constant numerical factor.
Incorporating the most relevant dimensionless group yields the
following scaling law:

1 pd3 0.016
T = 1997 \/j<_)
SLAW2 g\ m

which has a better predictive value for these experiments and
incorporates the effect of fluid drag. Fluid drag is relevant in this
case because we measured pendulums surrounded by air and wa-
ter, which differ by a factor of three orders of magnitude in their
density. In the set of relevant parameters, we did not include the
fluid viscosity. This choice is based on engineering insight that
viscous drag is negligible. A metric for the relative relevance of
viscosity is the Reynolds number, which in our experiments var-
ied between 10% and 10*. These values correspond to a flow in
which viscous drag is unimportant.

Figure 3 illustrates the predictive capabilities of the scaling law
obtained with the sLAW algorithm. Figure 3 plots the observed
period on the vertical axis versus the known law Tiory and the
scaling laws, T aw; and Tgp awo. On the horizontal axis. We also
plot the identity for comparison purposes. We note that all three

Ts aw1 =€

(11
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models predict the observed period of the pendulum very accu-
rately when the pendulum is surrounded by air. However, both
Tineory and Ty oy, are slightly off the observed values when the
bob was submerged in water. This effect is corrected by including
the most important dimensionless group that accounts for the ef-
fect of drag, and can be seen in the plot of Tg awo-

Table 5 presents the correlation with the observed period and
the average residual sum of squares for Tiyeorys Tspawi> and
T aw2- The correlation provides an indication of how well the
different models capture the functional dependence; in engineer-
ing terms, it captures the precision of the models. The average
relative error captures not only the trends, but also how close the
predictions and the measured data are. In engineering terms, this
would be the accuracy of the models.

4.2 Strain Energy in Ceramic-to-Metal Joining. Figure 1
shows the geometry of the problem, which consists of two long
cylinders; one made of ceramic and the other of metal. These two
cylinders are joined at their circular bases at high temperature.
The temperature variation between the hot joining temperature
and the cooler room temperature causes the ceramic and the me-
tallic cylinder to decrease slightly in size. Typically, the metallic
cylinder will shrink more than the ceramic cylinder, causing very
large stresses on and around the interface of the joint. These
stresses weaken the joint; therefore, the calculation of these
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Fig. 3 Theoretical and sLAw-generated scaling laws for the
pendulum example

Table 5 Correlation and error of the scaling laws for the pen-
dulum example

Model Correlation with T’ avg. RE
Tineory 0.992 0.056
T awi 0.992 0.044
Tsiawa 0.999 0.025
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Table 6 Parameters involved in the ceramic-to-metal bonding
example

Table 8 Matrix of reference units R for the ceramic-to-metal
bonding example

Symbol  Units Description

U m3Pa total elastic strain energy in the ceramic (dependent
variable)

E, Pa elastic modulus of the ceramic

Er;x Pa elastic modulus of the metal

oy Pa yield stress of metal

r m radius of cylinders

er differential thermal shrinkage

stresses is essential. The metric for these stresses is the “total
elastic strain energy” U (units=Pa-m?®) accumulated in the ce-
ramic. The total strain energy is the integral of the volumetric
strain energy over the total volume of the ceramic cylinder.

Scaling factors exist for cases in which the metallic cylinder
behaves elastically [26]. Similar scaling factors for when the me-
tallic cylinder experiences nonlinear plasticity have been obtained
only recently, by manual analysis of computational experiments
[27]. In this paper, we will show how SLAW automatically obtains
the same scaling factor of [27]. Similar to what is done in [27], we
consider that the parameters of Table 6 represent the total strain
energy in the ceramic. These parameters correspond to an elastic-
plastic metal and a linear elastic ceramic.

4.2.1 Input for sLAw. Table 7 lists the elastic strain energy,
which is the dependent variable that we wish to analyze, and the
problem parameters for nine numerical simulations of ceramic-to-
metal joints. In this problem, an engineering criterion was used to
discard the length of the cylinders as a relevant parameter. The
reason is that the cylinders considered are long enough, such that
the far end does not influence the joined faces.

Table 8 displays the matrix of units R for this example.

4.2.2  Output From sL.Aw. We now present the output obtained
from the SLAW algorithm for the above input data. The main out-
puts of SLAW are a simple scaling law, with rounded coefficients,
and dimensionless groups that identify the most relevant param-
eters to describe the fitting error of this scaling law. The following
scaling law was obtained after Step 1 of SLAW, using an avg. RE
criteria with a tolerance of TOL=0.2, and the rounding procedure
of Step 3.

A
UsLawi = EL (12)

c
This is the same scaling law that is obtained in [27] through ad

hoc analysis and physical considerations. Table 9 displays the sec-
ond set of iterations that determine the dimensionless groups and

Table 7
ceramic-to-metal bonding example

Units U E, E, oy r er
Pa 1 1 1 1 0 0
m 3 0 0 0 1 0

numerical constant ranked by relevance.

Incorporating this last dimensionless group, the constant factor,
in the scaling law, we obtain

3
Usiawz2 = 9_0'3330%_r (13)
c

In Table 10, we see that the average residual sum-of-square error
is greatly reduced by considering this constant factor. This table
also shows the correlation between the observed strain energy and
what is predicted by Ug aw; and Ug aw,. Here, we additionally
consider the scaling law Ug aw.iin, given by the simple model
selected by the avg. RE criteria, but prior to the rounding proce-
dure.

0%045 3
UsLaw-in = 1045 (14)

The model Ug pw.ii, 1 the best simple linear regression model,
but because the coefficients are not rounded, the model lacks
physical interpretation. We notice that adding this physical inter-
pretation by rounding the coefficients somewhat deteriorates the
predictive value of our model; however, we still keep very high
correlation with the observed strain energy and practically all the
increased error can be recovered by incorporating the constant
factor.

The predictive significance of these scaling laws is also ob-
served in Fig. 4, which plots the observed strain energy versus
what is predicted for the different models: Ug sw-jin» Uspawi»> and
Ugi awo- The figure shows that the experimental points fall closely
around a straight line of slope one. We notice that the best predic-
tion is given by model Ug; aw.iin» and that rounding the coefficients
consistently overestimates the strain energy. This effect is com-
pensated by incorporating the constant term in Ugp awo-

4.3 Maximum Stress in the Punch Test. The punch test is an
ASTM standard test, developed to determine mechanical proper-
ties of materials, such as ultrahigh molecular weight polyethylene
used in surgical implants [28]. The test consists of using a spheri-
cal tip to push the center of a disk constrained at the edge. Figure
5 shows the geometry of the problem, where a sphere of radius r
is pushing up on the center of a disk of radius L and width 7.

The goal in this example is to obtain a scaling law that repro-
duces the maximum stress in the disk (stress at point A in Fig. 5)

Input database containing the results of nine numerical experiments [27] for the

U E. E, oy r er
Ceramic Metal 1072 Pa-m? 10" Pa 10" Pa 108 Pa 103 m 1073
SizNy Cu 0.423 3.04 1.28 7.58 6.25 6.85
SN, Ni 152 3.04 2.08 1.48 6.25 5.15
SisN, Nb 2.80 3.04 1.03 2.40 6.25 2.10
SiyNy Inco600 3.78 3.04 2.06 2.50 6.25 5.15
SisN, AISI 304 3.88 3.04 2.06 2.56 6.25 7.10
SisNy AISI 316 491 3.04 1.94 2.90 6.25 7.00
AlLO; Ti 1.04 3.58 1.20 1.72 6.25 0.505
AL, Inco600 3.00 3.58 2.06 2.50 6.25 2.95
AlO; AISI 304 3.16 3.58 2.00 2.56 6.25 4.90
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Table 9

Result of Step 3 sLAaw for the ceramic-to-metal bonding example

Iter. Param. Constant E. E, oy r er avg. RE
1 5 0.138 ~0.151 0.192 —0.224 ~0.701 0.128 0.026
2 4 ~1.051 0.050 0.171 —0.221 —0.000 0.143 0.028
3 3 ~1.087 —0.000 0.221 ~0.221 0.000 0.131 0.030
4 2 0.642 —0.000 0.000 —0.000 —0.000 0.174 0.082
5 0 -0.333 -0.000 0.000 -0.000 0.000 -0.000 0.163

as a function of the displacement induced by the spherical tip.
This problem has been addressed in [29], by an ad hoc analysis of
computational experiments. Here, we show how SLAW automati-
cally recreates the results obtaining the same scaling law. Similar
to the work in [29], we consider a number of problem parameters
that describe the elastic regime of the problem; these problem

Table 10 Correlation and error of the scaling laws for the
ceramic-to-metal bonding example

Model Correlation with U avg. RE

0.9840
0.9835
0.9835

0.1694
0.3704
0.1626

USLAW—]in
USLAWI
USLAW2

0.06 -

0.05-

0041

0.03 *

0.02

Observed strain energy
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I s 3 L ]
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Fig. 4 sLAw-generated scaling laws for the ceramic-to-metal
bonding example

<
<

Fig. 5 Geometry of the punch test
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parameters and the dependent variable are listed in Table 11.

4.3.1 Input for stAw. This example considers the effect of
Poisson’s modulus v. In solid mechanics, this parameter typically
appears as a combination of v, 1-v, and 1+v; therefore, we as-
signed three columns corresponding to each possibility. Inputs for
SLAW are the table of experimental data and the units information
of the variables, which is displayed in Table 12 below.

4.3.2  Output From SLAW. We now present the output obtained
from the sLAW algorithm for the input data presented above. The
principal outputs from SLAW are the simple, physically meaning-
ful, scaling law and the most relevant dimensionless groups in
describing the fitting error of the rounded scaling law. By running
Step 1, using the avg. RE criteria with a tolerance of TOL=0.2,
and the rounding procedure of Step 3, we obtain the following
scaling law:

Ex

max

OsLAw1 = (15)

We note that Step 1 of the algorithm realized 13 total iterations,
and the last model with an avg. RE less than the tolerance of 0.2
is iteration 12. This scaling law is consistent with [29]. Again, the
SLAW algorithm found this law automatically, while in [29] it took
several hours of identifying trends manually. There is, however, a
significant difference between Eq. (15) and the result in [29],
which is the absence of Poisson’s coefficient in the former, while
the latter indicates that 1 —v should appear in an analytical expres-
sion. SLAW indicates that the error of neglecting v (or any of its
variations) in the error of the approximation is similar to the error
of neglecting other parameters that [29] also ignores. This does
not mean that v would not appear in an algebraic deduction; it
means that for the data set analyzed, neglecting the effect of v
does not introduce a significant error. For comparison purposes,
we will present the correlation and predictive value of the model
found in [29], which we refer to as op.

We can reduce the error of g sw; by using the dimensionless
groups and numerical constants obtained in Step 4 of sLAW. Table
13 displays a subset of the second group of iterations to determine
the dimensionless groups and numerical constant, ranked by

Table 11 Parameters involved in the punch test example

Symbol Units Description

maximum stress at A (dependent variable)
radius of circular sample

thickness of circular sample
radius of spherical punch tip
radius of contact of top constraint
corner radius of top constraint
corner radius of bottom constraint
Elastic modulus of sample material
Friction coefficient
Maximum displacement of punch tip
Poisson’s modulus

B
§B8B8B8B8B8BY

TmO ST YNNG

E
=
=i

1—Poisson’s modulus
1+Poisson’s modulus

—_—c
I
<

+
c
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Table 12 Matrix of reference units R for the punch test example

Units Tnax L t r a b c E M Xmax v 1-v I1+v
Pa 1 0 0 0 0 0 0 1 0 0 0 0 0
m 0 1 1 1 1 1 1 0 1 0 0 0
Table 13 Summary of results of Step 4 of sLaw for the punch test example
Iter. Param. Constant L t M Xmax v I+v avg. RE
1 12 1.19 0.40 -0.10 -0.14 -0.10 -0.17 0.72 -0.72 0.030
2 11 0.69 0.37 ~0.10 ~0.12 —0.08 -0.16 0.96 -2.57 0.031
3 10 0.72 0.37 -0.10 ~0.11 -0.08 -0.16 0.97 -2.67 0.031
4 9 0.69 0.38 -0.10 -0.11 -0.08 -0.16 0.96 -2.62 0.032
5 8 0.72 0.38 —0.11 —0.11 -0.07 -0.15 0.96 -2.63 0.032
6 7 0.78 0.38 -0.11 -0.11 -0.07 -0.16 0.98 -2.73 0.032
7 6 -0.66 0.37 -0.12 -0.10 -0.08 -0.15 0.37 0.00 0.033
8 5 -0.49 0.35 —0.11 —~0.10 0.00 —0.14 0.36 0.00 0.038
9 4 0.01 0.22 -0.12 -0.10 -0.00 -0.00 0.39 -0.00 0.044
10 3 0.10 0.15 -0.15 -0.00 -0.00 -0.00 0.43 -0.00 0.049
11 1 0.35 -0.00 0.00 -0.00 -0.00 -0.00 0.39 -0.00 0.061
12 0 -0.14 0.00 0.00 0.00 —0.00 0.00 0.00 —0.00 0.092
relevance. models of the system that not only achieve a high correlation with

The constant numerical factor compensates for the error intro-
duced in the rounding of the exponents. Including this constant
factor, we obtain the following scaling law:

Ex,,
ﬂ (16)
a

_ ,—0.138
OsLaw2 =€

In Table 14, we show the correlation to maximum stress and av-
erage residual sum-of-square error of opgg, Ogiawi, and Ogpawo-
We note that the average residual sum-of-square error is greatly
reduced by adding the constant factor to og sw;. Although this
table also shows that the scaling laws obtained from SLAW are
slightly less correlated than ogg to the observed maximum stress,
they are comparable and were obtained through an automatic
methodology. In fact, og aw, 1s slightly less correlated to oy,
than opg, but has smaller average residual sum of squares.

The predictive significance of these scaling laws is also ob-
served in Fig. 6, which plots the observed maximum stress versus
what is predicted for the different models: opk, Ogaw;, and
Ty awz- The figure shows that the experimental points fall closely
around a straight line of slope one; with model opg overestimat-
ing the maximum stress, and model og sy, underestimating the
maximum stress. Here, again, the model that incorporates the
most significant dimensionless group (in this case, a constant fac-
tor) is seen as more representative of the observed oy, Which is
quantified with a smaller average residual sum of squares.

5 Conclusions

In this paper, we propose a new algorithm, named SLAW, to
obtain scaling laws for complex systems from experimental data.
The algorithm SLAW combines the ideas of dimensional analysis
with statistical linear regression to obtain a representative model
of the complex system. The algorithm automatically generates

Table 14 Correlation and error of the scaling laws for the
punch test example

Model Correlation with oy, avg. RE

O 0.9592 0.1527
s awi 0.9573 0.2507
TSt Aw2 0.9573 0.1326
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the observed experimental data, but are at the same time simple
and physically meaningful. From linear regression, SLAW uses the
concept of backward elimination to simplify the models consid-
ered, and to obtain a rank of the importance of problem param-
eters. Dimensional analysis is used to obtain a model that satisfies
the units constraints and that considers only simple exponents.
The proposed SLAW algorithm is able to:

1. find the simple scaling law that rules many real-life engi-
neering problems.

2. provides a ranking of the significance of the parameters in
the problem.

These two features of SLAW make it a useful tool for engineer-
ing design, where simple and approximate laws can be used by
engineers to narrow down on a configuration during the concep-
tual stage of design. Even though the SLAW algorithm is based on
the standard tools of dimensional analysis and linear regressions,
it outperforms both of these techniques in identifying useful mod-
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Fig. 6 sLaw-generated scaling laws for the punch test example
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els for complex systems. The reason for this is that, more often
than not, complex engineering problems can be explained using
only a few of the physical parameters, and SLAW is able to identify
these important parameters.

The sLAW algorithm makes two central assumptions on the
physical system: (i) that a single physical regime is being modeled
and (ii) that at least all the relevant parameters of the system have
been included. The first assumption is necessary to obtain the
simplest possible model. Since different regimes are characterized
by different scaling laws, a data set that includes more than one
regime would necessarily consider more parameters; this in-
creases the complexity of the expression without adding to the
physical understanding of the problem. The second assumption is
standard for both dimensional analysis and linear regression mod-
els for physical systems. Clearly, it is not possible to explain a
system if a key parameter is omitted.

We apply the sLAW algorithm to three very different examples,
and note that SLAW automatically obtains the correct scaling law
in each one. The resulting scaling laws are simple, correlate well
with the experimental data, and are obtained using minimal user
expertise. The only alternative method to obtain scaling laws in
the last two examples involve time-consuming expertise-intensive
analysis of the data.

Future work in this algorithm will involve, for example, inves-
tigating efficient alternative methods of selecting simple models.
Currently, the algorithm eliminates one parameter at a time
through backward elimination, and therefore does not consider all
possible combinations of parameters. Therefore, the algorithm
can, in theory, miss the most adequate model; to evaluate the
impact of this on engineering practice, it is important to investi-
gate other methods of generating simple models such as forward
selection or even an exhaustive analysis of all combinations with
correct units for small problems. An implementation of forward
selection (albeit for predetermined dimensionless groups) was de-
veloped by Li and Lee [14].

Another potential improvement is a refined analysis of the di-
mensionless groups obtained. Currently, the less relevant dimen-
sionless groups consider a larger number of parameters, which are
also considered by the most relevant dimensionless groups. The
determination of simpler dimensionless groups, minimizing the
overlap of the parameters considered, would enhance their intui-
tive meaning.

Finally, the capability of SLAW of grouping a large amount of
data under a single, simple law could be potentially used for clus-
tering algorithms, separating experimental data into fewer and
well-defined groups characterized by their different simple scaling
laws. Further work will be necessary to explore the application of
SLAW to data sets that cover more than one regime, perhaps draw-
ing inspiration from previous multiple-regime work by Li and Lee
[14] and the artificial intelligence algorithm ABACUS [17].

Acknowledgment

The authors thank Dr. Jorgen Bergstrom from Exponent, Inc.,
for the concepts and calculations used in the punch test example,
and to Dr. Jin-Woo Park of Central R&D Institute in Samsung
Electro-Mechanics for providing the data related to the ceramic-
to-metal bonding.

References
[1] Kokshenev, V. B., 2003, “Observation of Mammalian Similarity Through Al-

Journal of Applied Mechanics

lometric Scaling Laws,” Physica A, 322(1-4), pp. 491-505.

[2] Azad, R. K., Bernaola-Galvan, P,, Ramaswamy, R., and Rao, J. S., 2002,
“Segmentation of Genomic DNA Through Entropic Divergence: Power Laws
and Scaling,” Phys. Rev. E, 65(5), p. 051909.

[3] Washio, T., and Motoda, H., 1999, “Extension of Dimensional Analysis for
Scale-Types and Its Application to Discovery of Admissible Models of Com-
plex Processes,” in 2nd Int. Workshop on Similarity Method, University of
Stuttgart, Stuttgart, pp. 129-147.

[4] Housen, K. R., Schmidt, R. M., and Holsapple, K. A., 1983, “Crater Ejecta
Scaling Laws—Fundamental Forms Based on Dimensional Analysis,” J. Geo-
phys. Res., 88(B3), pp. 2485-2499.

[5] Cho, J. Y. N., Newell, R. E., and Sachse, G. W., 1999, “Anomalous Scaling of
Mesoscale Tropospheric Humidity Fluctuations,” Geophys. Res. Lett., 27(3),
pp. 377-380.

[6] Carlson, J. M., and Doyle, J., 2000, “Power Laws, Highly Optimized Toler-
ance and Generalized Source Coding,” Phys. Rev. Lett., 84(24), pp. 5656—
5659.

[7] de Jong, F. J., and Quade, W., 1967, Dimensional analysis for economists,
Contributions to Economic Analysis 50, North Holland, Amsterdam.

[8] Szirtes, T., and Rézsa, P., 1997, Applied Dimensional Analysis and Modeling,
McGraw Hill, New York.

[9] Segel, L. A., 1972, “Simplification and Scaling,” SIAM Rev., 14(4), pp. 547—
571.

[10] Mendez, P. F., and Ordéiez, F.,, 2002, “Determination of Scaling Laws From
Statistical Data,” in Fifth Int. Workshop on Similarity Methods, University of
Stuttgart, Stuttgart, pp. 21-31.

[11] Kasprzak, W., Lysik, B., and Rybachuk, A. M., 1999, “Dimensional Analysis
in the Identification of Mathematical Models,” http://www.immt.pwr.wroc.pl/
kniga

[12] Vignaux, G. A., and Scott, J. L., 1999, “Simplifying Regression Models Using
Dimensional Analysis,” Aust. N. Z. J. Stat., 41(1), pp. 31-41.

[13] Vignaux, G. A., 2001, “Some Examples of Dimensional Analysis in Opera-
tions Research and Statistics,” in 4th Int. Workshop on Similarity Methods,
University of Stuttgart, Stuttgart, pp. 247-265.

[14] Li, C. C., and Lee, Y. C., 1990, “A Statistical Procedure for Model-Building in
Dimensional Analysis,” Int. J. Heat Mass Transfer, 33(7), pp. 1566—1567.

[15] Dovi, V. G., Reverberi, A. P., Maga, L., and De Marchi, G., 1991, “Improving
the Statistical Accuracy of Dimensional Analysis Correlations for Precise Co-
efficient Estimation and Optimal Design of Experiments,” Int. Commun. Heat
Mass Transfer, 18(4), pp. 581-590.

[16] Bradshaw, G., Langley, P., and Simon, H. A., 1980, “Bacon 4: The Discovery
of Intrinsic Properties,” in Proc. of the Third Nat. Conf. of the Canadian
Society for Computational Studies of Intelligence, Victoria, BC, pp. 19-25.

[17] Kokar, M. M., 1986, “Determining Arguments of Invariant Functional De-
scriptions,” Mach. Learn., 1(4), pp. 403-422.

[18] Washio, T., and Motoda, H., 1996, “Discovery of Possible Law Formulae
Based on Measurement Scale,” in Proc. of Fourth Int. Workshop on Rough
Sets, Fuzzy Sets and Machine Discovery, Tokyo, pp. 209-216.

[19] Li, C. C., and Lee, Y. C., 1989, “Computational Aspects of Dimensional
Analysis,” Int. Commun. Heat Mass Transfer, 16(2), pp. 315-321.

[20] Newcomb, S., 1881, “Note on the Frequency of Use of the Different Digits in
Natural Numbers,” Am. J. Math., 4, pp. 39-40.

[21] Benford, F., 1938, “The law of anomalous numbers,” Proc. Am. Philos. Soc.,
78(4), pp. 551-572.

[22] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., 1993, Nonlinear Program-
ming, Theory and Algorithms, 2nd Edition, Wiley, New York.

[23] Freedman, D., Pisani, R., and Purves, R., 1998, Statistics, 3rd Edition, W.W.
Norton, New York.

[24] Schlichting, H., 1987, Boundary-Layer Theory, 7th Edition, McGraw-Hill
Classic Textbook Reissue Series, McGraw-Hill, New York.

[25] Mendez, P. F, and Ordéiiez, F., 2004, “SLAW, a Package for Scaling LAWs
From Statistical Data,” http://illposed.usc.edu/~pat/SLAW

[26] Blackwell, B. E., 1996, A Framework for Determining the Mechanical Prop-
erties of Dissimilar Material Joints, Doctor of Philosophy, Massachusetts In-
stitute of Technology, Cambridge, MA.

[27] Park, J.-W., Mendez, P. F,, and Eagar, T. W., 2002, “Strain Energy Distribution
in Ceramic to Metal Joints,” Acta Mater., 50, pp. 883-899.

[28] American Society for Testing and Materials, 2002, ASTM F 2183-02. Standard
Test Method for Small Punch Testing of Ultra-High Molecular Weight Poly-
ethylene Used in Surgical Implants, W. Conshohocken, PA.

[29] Bergstrom, J., and Kurtz, S., 2003, “Extraction of Strength Properties of Bone
Cement From Uniaxial Tension, Uniaxial Compression, and Small Punch
Data,” Technical Report MT00046.0MD/COF2/0103/0001, Exponent, January
31.

SEPTEMBER 2005, Vol. 72 / 657



Energy Release Rates for an Edge

M. Toya

Professor

Department of Mechanical Engineering,
Kagoshima University, 1-21-40 Korimoto,
Kagoshima 890-0065, Japan

e-mail: toyamasa@mech.kagoshima-u.ac.jp

M. Oda

Research Assistant

A. Kado

Graduate Student

Delamination of a Laminated
Beam Subjected to Thermal
Gradient

Energy release rates for an edge delamination of a laminated beam subjected to through-
thickness temperature gradient are analyzed on the basis of the classical beam theory.
The decomposition of the energy release rate into mode I and mode Il components is
made by combining the analyses of the energy release rates by Toya (1992) and the

two-dimensional elasticity solutions for a split-beam element by Suo and Hutchinson

T. Saitoh

Chief Research Engineer

(1990). The energy release rate is a quadratic function of the temperatures of the top and
bottom surfaces of the beam. The transition of the type of crack growth between pure

mode 1l and mixed mode type occurs at the temperature difference corresponding to the

ULSI Device Development Division,
NEC Corporation,
Kanagawa 229-1198, Japan

minimum energy release rate. Numerical analyses based on finite-element method are
also carried out, which show that the theory agrees well with numerical results when
temperature jump across the delaminated surfaces is relatively small as compared with

the temperature difference between the top and bottom surfaces of the layered
beam. [DOL: 10.1115/1.1978917]

1 Introduction

Layered materials consisting of load-carrying metallic sub-
strates and ceramic layers deposited on them are expected to be of
highly temperature tolerant and wear resistant. Actually thermal
barrier coatings deposited on combustor liner and turbine blades
are being investigated for use in commercial aircraft engines.
These plate or shell components are put under thermal gradient
and consequently stresses are generated as a result of thermal
mismatch between adjacent layers. Especially, when initial
delaminations, or interface cracks, exist on the interface of the
layers, stress fields become singular at the crack tip and these high
magnitude of thermal stresses promote debonding of the interface,
which lead to serious degradation of materials. Therefore to elu-
cidate the condition of the growth of initial delaminations is
required for application of layered materials to commercial struc-
tures.

Brown and Erdogan [1] and Kuo [2] have investigated thermal
stresses around partially insulated two-dimensional interface
cracks lying on the interface of two semi-infinite different elastic
materials subjected to normal temperature gradient. Martin-Moran
et al. [3] and Barber and Comninou [4] studied the corresponding
disc-shaped crack problems. Hutchinson and Lu [5] analyzed the
energy release rate of a partially insulated interior delamination
embedded in an orthotropic beam which is subjected to tempera-
ture gradients.

Even for perfect bond, thermal stresses along the bond-line be-
come singular when approached to the free edge (Bogy [6]; Kuo
[7]). Thus delamination is most likely to occur from the free edge,
and hence the study of edge delamination is practically very im-
portant. Toya et al. [8] calculated the energy release rate of a
delamination at the edge of a laminated beam subjected to a uni-
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form temperature change. They confirmed that theoretical results
based on simple strength of materials theory compared well with
those of finite-element method.

In this paper we analyze an interface edge crack in a laminated
beam subjected to temperature gradient. The energy release rate is
obtained on the basis of the strength of material theory. Then the
decomposition of the energy release rate into mode I and mode II
components is made by combining the two-dimensional linear
beam solutions by Suo and Hutchinson [9] and the analysis of the
components of the energy release rates of an interface crack by
Toya [10]. Numerical analyses based on finite-element method are
also carried out and it is shown that the theory is accurate enough
when temperature jump between the upper and lower surfaces of
the crack is small.

2 Analyses

2.1 Reduction of the Problem to a Split-Beam Subject to
Externally Applied Forces and Moments. Figure 1 shows the
model of an edge delamination of a bimaterial beam subject to
temperature gradient. The beam is formed by bonding two differ-
ent isotropic and linearly elastic rectangular beams having the
same length € and width b, and it contains an edge delamination
with the length c¢. The thicknesses, Young’s moduli, coefficients of
thermal expansion, and coefficients of thermal conductivity of the
two layers are denoted by h;, E|, «;, A; for the upper beam and
hy, E,, ay, \, for the lower beam, respectively. The top surface
(y=h,;) is subject to a uniform temperature 7; and the bottom
surface (y=—h,) T,. As in the model considered by Hutchinson
and Lu [5], we also assume that there is a temperature gap on the
delamination surfaces (y=+0,0<x=<c), with the temperatures
being T, and T for the upper and lower faces of the delamina-
tion, respectively. At uniform temperature of 7;=7,=0°C, no
thermal stress is induced in the beam.

For simplicity, we assume that no heat flows in the axial (x)
direction across the cross section passing through the delamina-
tion tip B, and hence the temperature gradients in both the bonded
and delaminated regions are uniform along the x axis (Hutchinson
and Suo [5]). With this assumption, temperature distributions are
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Fig. 1 Model of a laminated beam with an edge delamination
subject to temperature gradient

readily determined. In the bonded part AB, denoting by 7|, the
temperature at the interface, temperature distributions in each
layer are given as

To1(y) = (T, = To)y/hy + Ty (y>0), (1a)

To(y) = (Toy— T)ylh, + Ty (y <0) (1b)

The heat fluxes in the y direction in the upper (y >0) and lower
(y<<0) layers are given as

q1=—)\l(T1—TO)/h1, qzz—)\2(TO—T2)/h2. (2)
From the condition ¢,=g,(W/m?), we obtain

To= (T, + nT,)/(1 + n), (3)

where

7= N1 /(Nhy). (4)

Temperature distributions in the parts of the beam upper and
lower to the delamination are given by Eq. (1a) with T} replaced
by T, and by Eq. (1b) with T} replaced by T, respectively. As is
well-known, for homogeneous beams, no thermal stress is induced
by the temperature distribution that is linear in y. Consequently,
within the approximation that no heat conduction in the axial (x)
direction occurs across the cross section at the tip of the delami-
nation, strain energies in the parts of the beam over and below the
delamination are zero. Hence, though we have started from rather
general temperature condition, the energy release rate is deter-
mined solely by the strain energy in the bonded part AB, the
temperatures 7, and T having no effect on the energy release
rate. In other words, for the purpose of energy consideration, we
can replace T4 and Ty by the temperature at the bond line 7. We
will later examine the accuracy of this approximation on the basis
of finite-element analyses and elucidate under what condition our
approximation can be validated.

The analyses of deformation of the beam may be conducted by
assuming imaginative “cut and paste” procedures which consist of
the two steps as illustrated in Figs. 2(a) and 2(b). At temperature
0°C, we imaginatively isolate the beam in many thin slices with
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63(20)

Fig.2 Cut and paste procedure for analyzing thermal stress of
a cracked laminate. (y is the distance of the neutral axis of the
bonded part from the top surface.)
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the thickness dy. With the temperature distribution as given by Eq.
(1) with T,=Tg=T,, each slice will stretch to different lengths. In
the first step, in order to make these slices equal in length, normal
axial stress o, =ay(y) is applied at both ends and in this stressed
state all slices are bonded one another except over the surfaces of
the interface crack (y=+0,0<x<c). At this stage axial resultant
forces Py, P,, and P5 are applied at the ends of the beam as shown
in Fig. 2(b). In the second step, in order to realize the condition
that actually no external stresses act at both ends of layers, the
normal stress oy(y) is removed. This removal of the stress is
equivalent to the application of the moment M5 about the neutral
axis of the bonded beam that is distant y from the top surface at
the left end of the beam. Likewise the moments M, and M, are
produced at the right-hand ends of the upper and the lower beam
of the crack, respectively [cf. Fig. 2(b); signs of these quantities
are positive when they act in the directions as shown in Fig. 2(b)].
The longitudinal stress due to thermal gradient is given by the
sum of gy(y) and the stress induced by these moments. This tech-
nique was first introduced by Timoshenko [11] and was applied to
the analysis of the deflection of bimetal plates.

Now, let us determine these moments and the axial forces. The
extension of each slice A is given by

A={aTo(y) + ooWV/E . (vy>0),

(5)
A={a,Tor(y) + oo(W)/Es} (v <0).

If we assume that the extension A of each slice given by Eq. (5) is
made equal to one another under the condition

hl
J o,(y)dy=0 (6)

_hZ

then the extension A is given by

4 T +T, T+ T,
A= L ()Elalhl + uEzath (7)
Eh +Ehy| 2 2

Stress o(y) can be determined by substituting Eq. (7) into Eq.
(5). For the upper layer (y>0) we have

oo(y) == a,E\(T) = To)ylh, + Ey (8)
where
E Ey [(T, = To)E a,h, - (T, Tya,)Eh
= - ah) — (Tya, - Tha
U 2(E1h1 +E2h2) 1 o/=1¢017] 01 202 ) =200

= (o) = ) ToErhy ] 9)
and for the lower layer (y<0),
00(y) == arE5(Ty = To)ylhy + E;. (10)
where
__ B
N 2(E hy + E;h,)
+(a) — ap)TyE hy] (11)

Next, we calculate P; and the moments M, and M5 that are
produced by the removal of o(y). They are given as follows:

E; [ (Ty = To)Esanhy + (Tyay — Toan)Ehy

hy
Py =Py= bf oo(y)dy == hiblayE\(T, = To) = 2E,)/2
0

(12)

o
M1=bj ooy =y /2)dy = — a,bE\ R (T = Ty)/12 (13)
0
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hy
M;= bf ooy + (7= )ty
_hz

=— b[R(Tl - Tz) + 3E|E2h1h2{(Ah] + Chz)T]

= (Bhy + pDhy) To}/[12(1 + 7)S] (14)
where
R = pa,E* I3 + 4ma E\Ey o hy + 4B Exhy B3 + an Bk (15)
S=Eh, +Esh, (16)
and
A=2a;-a;, B=-2na;+(1+27n)a,,
C=2+na-2a,, D=2a,-q (17)

Because of the condition Eq. (6), the axial force Ps is zero. The
problem of determining thermal stresses is thus reduced to the
problem of a laminated beam subjected to the external axial forces
and moments as shown in Fig. 2(b).

2.2 Energy Release Rate and Its Mode I and Mode II
Components. Since the development of delamination is nothing
more than the growth of the interface crack, the energy release
rate becomes the most important parameter. As mentioned previ-
ously, for obtaining the strain energy of the beam, we need only to
calculate the energy of the bonded part AB. First, we calculate the
strain energy due to the application of normal stresses on both
sides of thin strips [cf. Fig. 2(a)]. For the upper layer, the strain
energy density is u; =o%(y)/ (2E,), so that by integrating bu; from
y=0 to &y, we have the strain energy Uy per unit length of the
beam as follows:

Uy=bhE\[(3/S*){- @ E h,(E hy + 2Eh,)(T, - T,)?
+ 2@, E3h3(AT, — BT,)(T, - Ty) + E3h3(AT, — BT,)?}
+4ay(T, - T,)*V[24(1 + n)*] (18)

where @;=na;. By the same manner, the strain energy U; per unit
length of the lower layer is given by

U, =bh,E[(3/8*){- agEzhz(ZElhl + E)hy) (T = T)?
+2a,E 3 (CTy — pDT,)(T, = T») + E1h(CT, — 7DT,)*}
+405(T, - To)*V[24(1 + 7)*] (19)

Next, the strain energy per unit length of the bonded part that is
released by the relaxation of the stress oy(y) is given by

Uy =M3(2D") (20)
where D’ is the flexural rigidity of the laminated beam,
D' =D, + D, + h*Dy/4 (21)

with D|=E,I, and D,=E,I, [1j=bh;/12 (j=1,2)] being the flex-
ural rigidities of the upper and lower layer, respectively, and

Dy=bl[(E\h)™" + (Exhy)™'], h=hy+hy (22)
The strain energy per unit length of the bonded part of the beam is
given by Uy+U;—U,; and by dividing this by the width of the
beam b, the energy release rate is obtained. After somewhat te-
dious manipulation, arranging in terms of the temperatures 7, and
T,, we obtain the energy release rate as follows:

1 E\E>hh

Gz ()= T)20+ — 1=

24(1 + n)°SH 8SH

+ G, (23)

where G corresponds to the energy release rate for the uniform
temperature change (T,=T),)

(Ty - ) (1T, - foT»)
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Go = E\Exh hyT\To(a, — an)*(E 11} + E;h3)I(2H) — (24)

The quantities Q, H, f, f> are constants that depend only on the
geometry of the beam and mechanical and thermal properties of
constituent materials; they are given as follows:

Q = SH(7?’E h + &3E;h,) — R? (25)

H=12D'S/b (26)

f1= filay, a0, B Ey by by, m) = [H{(2 + n)a; — an)’
— 3E,\Eyhyhy(Ahy + Chy)? = 2R(Ahy + Chy) /(1 + 7)?
(27)

fo=filag, a1, Es Ef hy,hy, 1) = [H{- pay + (1 + 277)012}2
— 3E,Eyh hy(Bhy + pDh,)? — 2R(Bh, + 5Dhy)1/(1 + 5)?
(28)

The energy release rate G is a quadratic function of 7' and 75,
and the effect of the thermal conductivities on G appears only
through the parameter 7. As expected, for a homogeneous beam
(ay=ay,E|=E,,n=h,/h,), G is zero. Further, Eq. (24) with both
T, and T, replaced with AT (uniform heating or cooling) agrees
with the previous result obtained by Toya et al. [8]. We also note
that if a;=a,, then f;=f5, so that in this case G is proportional to
(T,—T>,)? irrespective of the difference in the thermal conductivi-
ties, and the minimum value of G is zero. Since G does not de-
pend on crack length, the delamination growth occurs in a steady
state condition.

Equation (23) applies to plane stress condition. For plane strain
condition, E;(i=1,2) appearing in Egs. (23) and (24) and in all
relevant equations [i.e., Eqs. (21)-(28)] should be replaced with
E,-/(l—viz) and «; with «a;(1+v;), where v; is Poisson’s ratio
(Hutchinson and Lu, [5]).

In developing the theory and experiments of the condition of
delamination growth, not only the total energy release rate but its
mode I and mode II components are also important parameters,
and hence it is desirable to separate the energy release rate into
mode I and mode II components. To do this considerations based
on the analyses of the near-crack-tip singular fields are needed.

With the definition of the complex factor in the notation by Suo
and Hutchinson [9], which is similar to the stress intensity factor
introduced by Malyshev and Salganik [12], singular stresses on
the bond line are given as

(29)

where K=K;+iK; (henceforth referred to as complex stress inten-
sity factor) and r is the distance from the crack tip. The height
hy of the upper beam is chosen as the normalizing factor for r.
Further,

Oy +iTy = K(rlhy)®(27r)'?

e=Q2m " In[(1-B)/(1+8)] (30)
where ,8* is one of the two Dundurs’ parameters,
B =[Tly=1) = (k= DUT (e + D + (i + D] (31)

Subscripts 1 and 2 refer to the upper and lower beams as before,
and «;=3—4v; for plane strain and x;=(3-v;)/(1+v;) for plane
stress, I'=u/ uy, p; being shear modulus (i=1,2).

The normal component of the relative displacement of the two
points of the upper and lower crack surfaces is given by

v= m[(KI + 28KH)COS(8 In hL) - (Ky- 28K1)sin(s In hL)] Jr
1 1

(32)

where
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m=[(ky + Dy + (k3 + DIps)[2277(1 + 4e)cosh(me)]
(33)
Suo and Hutchinson [9] gave formulas of Kj and Kj; for the
split-beam with a unit width subjected to general stretching and

bending as shown in Fig. 2(b). Their expressions modified for a
beam with width b are

P Py My .
K;=——| —= cos w + ——== sin(w + ) (34)
! \’2b|: VA()hl \/E:]5 :|

P M

Ky= -2 == sin 0 - —=% cos(w+ 7) (35)
where

P0=P1—C1P3—C2M3/h1 (36)
M0=M1—C3M3 (37)

The constants p, Ag, I, y, and C; (i=1,2,3) are expressed as
follows:
p=[(1-a)/(1-p2]" (38)
where
a' =[[(ky+ 1) = (k + DU (i + D+ (5, + D] (39)

is a Dundurs’ parameter. Further, under plane stress condition,
with the notations in the present paper,

DyD, i (D' -D)D,

0= T s siny=A[————

bE\h\(D" = D,) (D' -D,)D
I=D,/(12D), C,=Dy/(bEsh,)

C,=hhDy(2D"), Cy=D,/D’, (40)

[For plane strain condition we replace E; (i=1,2) appearing in Eq.
(40) and in the definitions of Dy, Dy, D,, and D’ with E;/(1
—Vl-z).] Values of angular quantity w, which are dependent solely
on the ratio /;/h, and Dundurs’ parameters, «” and 8", are pro-
vided in Tables 1-4 in Suo and Hutchinson [9]. By substituting
M, M5, and P, given by Egs. (12)—(14) into Egs. (36) and (37),
stress intensity factors K| and Kj; are immediately obtained from
Egs. (34) and (35).

The opening (mode 1) and sliding (mode II) components of the
energy, GIA and Gﬁ, that are released during an incremental exten-
sion of an interface crack, Aa, were first calculated by Sun and Jih
[13]. One of the present writers gave formulas of GIA and Gﬁ
expressed in terms of the complex stress intensity factors as fol-
lows (Toya, [10]):

G =(G2)[1 + F(e)cos(2ea’ + ¢(e) + 6y)|Aa

D=D,+D,

G4 =(G2)[1 - F(e)cos(2ea’ + ¢(e) + 6y)|Aa (41)
where
sinh(2me) |2
Fle)=| ————2 42
(&) [2778(1 +482):| “2)
a' =1n[Aal/(2hy)] (43)
o(e) = 2 <Tan1 s Tan . £ ) (44)
=0 1+n 2 +n
Tan™'[(1 - k* + 4ek)/ky] for ko> 0 45)
O7 | Tan™'[(1 = K2 + 4ek) ko) + m for ky =<0
with
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k=Ky/K,, ky=2[k+e(k®>-1)] (46)

Values of ¢(g) are tabulated in Table I in Toya [10]. Especially
when ¢ is small, say |¢|<0.05, the following approximation may
be used

o(e)=—2e1n2=-1.3863¢ (47)
Further, G is the total energy release rate (Malyshev and Salganik,
[12])

+1 +1
G= (Kl_ + Kz—)([{l2 + K3)/[16 cosh?(mre)]
M M2

(48)
Referring to Eq. (43), we see from Eq. (41) that the conventional
definition for the components of the energy release rate, i.e.,
limp,_q GiA/Aa (i=I,1I), cannot be applied for interfacial cracks.
Instead each component should be defined as

Gy = G Aa,
(49)
Gy = Gi/Aa

for some finite crack growth step size Aa (Toya, [10]; Toya et al.,
[14]). There is no definite way of choosing a proper size of Aa
yet, but a reasonable definition of Aa should be such that Aa is
large enough as compared with the size of the zone of oscillatory
singularity for which the relative displacement v becomes nega-
tive, but still small enough so that Egs. (29) and (32) provide a
good approximation for the stresses and displacements. As such, a
characteristic length of delamination process, e.g., the thickness of
an adhesive layer could be suggested.

It seems to be common to express mode mix by a phase angle
Tan™!(K,/Ky;) (e.g., Hutchinson and Suo [15]), but since G; and
Gy are solely dependent on Kj/Kj;, both definitions of the mode
mix are essentially equivalent. The present writers believe, how-
ever, that the introduction of Gy/Gy; as a characterizing parameter
for mode mix is advantageous in that in finite element analyses it
is easier to obtain as compared to the determination of Ky and K.
Further, for relatively small & (say, when |&|<0.05), G; and Gy
are not strongly dependent on Aa (Toya, [10]).

Now returning to our problem, we have from Egs. (36) and
(37),

Po/b=A"(T, = T,)/(1 + 1) + Do(— AT, + BT,)/[2b(1 + 7)]
+hDJ[(Ahy + Chy)T, — (Bh, + 7Dhy)T,/[86D' (1 + 7)]

(50)
My/b=B"(T, - T,))/(1 + 7) + DyD,/[4bD' (1 + 7)]
X [(Ah; + Chy)T, = (Bhy + 5Dh,)T5] (51)
where
. Dy bhR . D, [ bhR
DR ) DR )
2b\ 128D’ bhy\ 128D’

Therefore, if either T} or T, is zero, then the ratio Py/M is con-
stant, meaning that the ratio of G;/Gy; or K;/Kj; is independent of
temperature gradient. Otherwise, generally the ratio G;/Gy are
functions of both 7', and 7. It is readily checked that for homo-
geneous beams, K and Kj; are zero, and for uniform temperature
change T,=T,, the energy release rate calculated from Eq. (48)
coincides with Eq. (24). Moreover, we can generally prove that
Eq. (48) coincides with Eq. (23). We could thus obtain the total
energy release rate from Eq. (48), but the resulting expression is
very lengthy and hence the straightforward calculation of the
strain energy in the previous section is advantageous only for
obtaining explicit expression of the total energy release rate in a
compact form.

2.3 Biot Number. In our original model (Fig. 1) the tempera-
ture jump across the crack surfaces was assumed. In the approxi-
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mation that there is no heat flow in the axial direction across the
cross section at B, the energy release rate does not depend on the
temperature gap. In the next section, we will examine the appro-
priateness of our assumption by using finite-element method. To
this end we here introduce Biot number which may be conve-
niently utilized as a parameter that characterizes the degree of
temperature gap ([2],[5]). When the thermal-conductivity between
two crack faces is characterized by h,, the heat flux across the
jump ¢, (W/m?) may be expressed as ([2],[5])

qc= h(‘(TB - TA) (53)

Equations similar to Eq. (2) hold for the heat flux in the upper and
lower beams of the delamination, viz.,

q1==M(T\=Ty)lhy, qy=—=N(Tg—T,)/h, (54)

By the condition of equilibrium of heat flux, ¢ =¢,=¢,., T4 and Ty
are expressed as follows:

_ T\(1+ 7) + BT + 5T,)

Ty= 55
A (1+B)(1+7) 53
T5(1+ n) + BT, + 9T
Ty= o( 7) Ty + 7T>) (56)
(1+B)(1+7)
where
Ny + Noh
B =127 721, (57)

c— }\17\2 c

is a dimensionless Biot number that characterizes the heat flow
across the interface crack. B.=0 means that the crack is perfectly
insulated, and hence T,=T), Tp=T,, while B.=% means that the
heat flux is not disturbed by the crack and therefore T,=T3=T),.
The temperature jump across the crack is given by

Ty—Ty=(T;-T,)/(1+B,) (58)

In the next section we calculate the energy release rate for
several values of Biot number using finite-element method and
examine to what extent of Biot number our theoretical predictions
of the energy release rate may be validated.

3 Analyses by Finite-Element Method (FEM)

In this section we compare the theoretical results with those
from FEM. The FEM program developed by Okusa [16] is uti-
lized, by which mutual contact of crack faces may be readily
analyzed. We improved his program so that the thermal stresses in
laminated beams might be treated.

To obtain the components Gy and Gy, the finite element crack
closure simulation (Rybicki and Kanninen, [17]) is performed. In
this method, the nodal forces required to close the virtual crack
extension, Aa, which is taken as the width of the element adjacent
to the crack-tip, are computed using the local compliance method
(cf. Armanios et al. [18]). Both components of the energy release
rate are then given by

_lYAv _lXAu
"2 Aa” T2 Aa

where Y and X are normal and tangential nodal forces required to
hold two nodes together at the crack-tip, and Av and Au are the
normal and tangential relative displacements of the extended
crack, respectively. The total energy release rate is given by the
sum of both components.

The beam with length € =100 mm and containing an edge crack
with length ¢=30 mm is chosen as a basic model beam (except
the case where the effect of the crack length on the energy release
rate is examined: cf. Fig. 8). The thicknesses of the beams A, h,
are varied between 2 and 4 mm. The triangular element with the
base length of 0.5 mm is chosen as a basic one. Element sizes are
made smaller towards the crack tip, and the mesh of triangular
elements with the base length Aa=0.125 mm is used in the small

(59)
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Fig. 3 Schematic diagram of the mesh division

region surrounding the crack-tip. A schematic diagram of the finite
element discretization is shown in Fig. 3. The temperature 7, was
taken to be 7,=0°C, 250°C, 500°C, while T is varied so that
|T,—T,| ranges from 0°C to a maximum 1000°C. We assume
several Biot numbers ranging from 1 to infinity, and temperatures
T, and Ty determined from Egs. (55) and (56) are imposed on the
upper and lower crack faces. The support condition of the beam is
taken as indicated in Fig. 3 and both side surfaces are assumed to
be thermally insulated. Computations are performed under plane
stress condition.

Materials chosen are alumina (Al,O3), titanium alloy, Pyrex™
glass, and 0.2% C carbon steel. Young’s moduli (E), Poisson’s
ratios (v), coefficients of thermal expansion («), and thermal con-
ductivities (\) of these materials are listed in Table 1. Model
beams, for example, such as consisting of alumina and Pyrex glass
are intended for verifying the accuracy of the theory and we bear
no realistic application in mind. Further, we assume that the val-
ues of materials constants are independent of temperature.

In the first step of computation, we assume no contact of the
crack faces, and check the sign of the relative displacements in the
y direction of the nodes on crack faces nearest to the crack tip. If
v<<0, this implies the contact of the crack faces. In this case the
condition of contact, viz. the relative displacement in the y direc-
tion should equal to zero, is imposed for all nodes on the crack
faces and calculation is freshly conducted. Next if tensile nodal
forces are detected for nodes on the crack faces, the condition of
contact is relaxed at these nodes at the next calculation. This pro-
cedure is repeated until no tensile nodal forces are detected at all
nodes on the crack faces. In some cases, however, no convergence
was found, in which case calculations were truncated after several
repetitions. By these procedures, the relative displacements « and
v between the two nodes nearest to the delamination tip are ob-
tained. The mode I and mode II energy release rates are then
calculated from Egs. (59). The total energy release rate is obtained
by the sum of these components.

Variations of the energy release rate and its mode I and mode II
components with the temperature difference in the case of infi-
nitely large Biot number are shown in Figs. 4 and 5 to compare
the theoretical results with FEM solutions. The cases of T,
=0°C (Fig. 4) and T,=500°C (Fig. 5) are chosen. Model mate-
rials combinations are alumina/titanium alloy (thicknesses with
hy=h,=4 mm) and alumina/Pyrex glass (thicknesses with h;=h,
=2 mm). In deriving theoretical values of each component of the
energy release rates, we referred to the values of w summarized in
tables in Suo and Hutchinson [9]. According to their tables, w
~51.7° (degree) for titanium alloy (upper layer)/alumina (lower
layer) composite, and w=44.1° for alumina (upper layer)/Pyrex
glass (lower layer). For the computations of alumina (upper

Table 1 Mechanical and thermal properties of model materials
E(GPa) v  a(X10%/°C) X\ (W/m°C)
Alumina (Al,O5) 200.0 0.25 8.00 20
Titanium alloy 111.0 0.32 8.90 7.1
Pyrex glass 65.46 0.20 3.25 0.9
0.2%C Carbon steel 2060  0.30 14.30 46
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Fig. 4 Variation of energy release rate and its components
with temperature difference for the case of T,=0°C and B.=x.
(a) Alumina (upper layer)/titanium alloy (lower layer), h;=h,
=4 mm; (b) alumina/Pyrex glass, hy=h,=2 mm.

layer)/titanium alloy (lower layer) composite [Figs. 4(a) and 5(a)],
we reverse the beam and 7, is varied while 7 is held constant.
Using these values and substituting Egs. (50) and (51) into Egs.
(34) and (35), we obtain K; and Ky. We then check the sign of
relative displacement v from Eq. (32) at the distance Aa
=0.125 mm. If vis positive, we calculate Gy and Gy according to
Egs. (49). While if negative, this means that G;=0 and hence Gy
is equal to the total energy release rate G.

In Figs. 4 and 5 we observe that the theory agrees well with the
computational results from FEM, the difference being less than
10%, which confirms the validity of the theory for infinitely large
Biot numbers (7,=Tjg). When T,=0°C, the energy release rate
increases in proportion to the square of 7 —T7, and becomes zero
when T;-T,=0°C, agreeing with the theoretical prediction.
When 7,=500°C, the condition 7;—7,=0°C implies the uniform
heating with 500°C, and in this case the energy release rate is no
longer zero. Further, the values of 7|—T, corresponding to the
minimum energy release rate are not zero in general [cf. Eq. (23)].
For alumina/titanium alloy combination, for which values of
thermal-expansion coefficients are close one another, the energy
release rate becomes minimum at small values of 7T, as pre-
dicted from the theory [Figs. 5(a) and 5(c)].

In Figs. 4(a) and 4(b), we see that when T,=0°C, the ratio of
G/ Gy is constant independent of the temperature difference,
whereas when 7,=500°C (Fig. 5) the ratio of G{/Gy; varies ac-
cording as T —T, is varied. Theoretical values of G/ Gy and those
from FEM are tabulated in Table 2, in which reasonable agree-
ment between the theory and numerical results may be observed.

Further, we observe from Figs. 5(a)-5(c) that the transition of
the type of delamination growth from pure mode II to mixed
mode type, or in the reversed direction, occurs at the temperature
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Fig. 5 Variation of energy release rate and its components
with temperature difference for the case of T,=500°C and B,
=x. (a) Alumina (upper layer)/titanium alloy (lower layer), h,
=h,=4 mm; (b) alumina/Pyrex glass, h;=h,=2 mm; (c) titanium
alloy/alumina, h;=hy=4 mm.

difference corresponding to the minimum energy release rate. This
mode transition by the temperature difference is also consistent to
the change of the sign of v given by Eq. (32).

The effects of Biot number on the energy release rate are shown
in Fig. 6 for alumina/Pyrex glass combination for the case of 7,
=0°C [Fig. 6(a)] and 500°C [Fig. 6(b)]. In Fig. 6(a), agreeing
with our qualitative expectation, the energy release rate becomes
larger as Biot number decreases from infinity to zero. In Fig. 6(b)
the minimum value of the energy release rate becomes larger as B,.
decreases. On the other hand, in Fig. 6(a) theoretical results com-
pare well with the numerical solutions when Biot number is 1,
while in Fig. 6(b) the theory compares well when Biot number is
larger than 7, for which the differences between the theory and
numerical results are less than 15%. Similar results, which are not
shown here for economy of space, were obtained for alumina/
titanium alloy composite. Overall, for the materials combinations
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Table 2 Ratio of the components of the energy release rate G,/ G, (percent) for alumina/Pyrex

glass (hy=hy,=2 mm)

7,=0°C 7,=250°C 7,=500°C
T,-T, Theory FEM Theory FEM Theory FEM
250°C 37.22/62.78  32.47/67.53  32.85/67.15  27.76/72.24
500°C 41.50/58.50  37.15/62.85  37.23/62.77 32.47/67.53
750°C 49.60/5040  46.17/53.83 43.59/56.41 39.46/60.54  39.81/60.19  35.28/64.72
1000°C 44.82/55.18  40.83/59.17  41.50/58.50  37.15/62.85

considered in the present paper, we may conclude that the theo-
retical results would give reasonable value of the energy release
rates for Biot number that is larger than 7.

It is to be noted that actually the parameter 4, introduced in Eq.
(53) is a function of crack opening, &, and Biot number is in-
versely proportional to 8 ([5],[19]), which means B, becomes in-
finite when approached to the crack tip (no temperature gap at the
crack tip). Thus the condition of uniform temperature on crack
faces should be regarded as an effective or averaged condition.
Since the energy release rate will be strongly dependent on the
temperature distribution near the crack tip while in the present
problem it is little affected by the temperatures on crack faces well
away from the crack tip, the condition of perfect insulation will be
too extreme. Thus it is probable that the average Biot number may
be taken to be rather large and the present theory assuming no
temperature jump on crack faces would give reasonable predic-
tions of the exact energy release rate.

Graphs of the energy release rate as a function of the thickness
ratio, h,/h,, are shown in Fig. 7 for alumina (upper layer)/steel

g 1200 : : : :

S5
1000

800
400
200

T T
1 2

Fig. 6 Effect of Bio number on the relation between energy
release rate and temperature difference for alumina (upper
layer)/Pyrex glass (lower layer) laminate of h;=h,=2 mm. (a)
T,=0°C; (b) T,=500°C.
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(lower layer) laminate, where T is taken to be either 250°C or
500°C while T, is kept 0°C. At the FEM computation the height
h, is fixed as 2 mm and h; is varied between 0.25 mm and
10 mm. It is confirmed that theoretical curves agree well with
computational results. We note that for this combination of mate-
rials the energy release rate becomes the largest at relatively thin
upper layer (h;/h,=0.2).

Both the present analyses and the theory of Suo and Hutchinson
[9] are based on the assumption that the lengths of the cracked and
bonded parts of the beam are much longer than the height of the
beams, so that the application of our theory is limited to these
cases. Figure 8 shows the variation of the energy release rate with
the length of delamination, where the alumina/Pyrex glass lami-
nate with #;=h,=4 mm is assumed and temperatures are chosen
to be 7,=250°C and T,=0°C. We find that when ¢>0.75 h;(h,),

NE1m T T T T T
5 : ' f ‘
- i ==-Theory (T =250°C)
BOMN...... . L o
—Theory (TI=500°C)
. ® FEM =250°
[70]1: T VU SR (T1 250°C) R
A FEM (T =500°C)
o A ! ‘

Fig. 7 Variation of energy release rate with thickness ratio for
alumina (upper layer)/carbon steel (lower layer) laminate (B,
=, T,=0°C)

1.5 2

Fig. 8 Variation of energy release rate with the length of
delamination for alumina (upper layer)/Pyrex glass (lower
layer) laminate (B,=«,T;=250°C,T,=0°C, h;=h,=4 mm)
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the energy release rate reaches a constant that is close to the
theoretical value and hence the present analysis may well be ex-
pected to apply to the crack length longer than the beam heights.
Moreover, the present analyses give the largest value of the energy
release rate. These features agree with the expectation of Hutch-
inson and Lu [5].

4 Concluding Remarks

The edge delaminations in layered beams subjected to thermal
gradients have been analyzed. We theoretically derived the energy
release rate on the basis of classical beam theory. Combining
Toya’s energy release rate analysis for an interface crack [10] and
Suo and Hutchinson’s formulas [9] of the complex stress intensity
factor, the decomposition of the energy release rate into mode I
and mode II components was made. The energy release rate was
found to be a quadratic function of the temperatures of the top and
bottom surfaces of the beam and independent of the beam and
crack lengths. By comparing with the results of numerical analy-
ses based on FEM, present theory has been found to be accurate
enough when the length of delamination is longer than the thick-
ness of the upper layer and there is no temperature gap between
crack surfaces.

Further, if either T, or T, equals to zero, then the ratio of G|/ Gy,
is constant independent of temperature difference 7, —7,. While if
both T and T, are not zero, then the ratio changes according as
T,-T, is varied. Theoretical analyses also predicted that the
change of the mode of delamination growth from pure mode II
type to mixed mode type, or in the reversed direction,
occurs at temperature difference corresponding to the minimum
energy release rate. This prediction was also confirmed in FEM
computations.

FEM analyses for the cases where there is a temperature gap
between upper and lower surfaces of the crack were also carried
out. It was found that in the case where temperature gap is small
(when Biot number is larger than 7), the difference between the
theory and the results from FEM was less than 15%. Hence
present theory will be particularly effective for crack growth in
pure mode II, because in this case crack faces are contacting one
another so that the temperature gap is expected to be very small.

It was argued that, since in fact there is no temperature gap at
the crack tip, the average Biot number near the crack tip may be
taken to be rather large even when crack faces are open. It is
probable that the present theory assuming no disturbance of heat
flow by the crack would give reasonable predictions of the energy
release rates even for mixed mode delamination. However, the
verification of this qualitative expectation is left for future study.
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Using Series-Series Iwan-Type
Models for Understanding Joint
Dynamics

In mechanical assemblies, the energy loss induced by joints and interfaces can account
for a significant portion of the overall structural dissipation. This work considers the
dynamical behavior of an elastic rod on a frictional foundation as a model for the
dissipation introduced by micro-slip in mechanical joints. In a quasi-static loading limit,
the deformation of the rod and hence the frictional dissipation can be solved in closed
form. The resulting model is a continuum model of series arrangements of parallel
Jenkins elements. For a general class of normal load distributions, the resulting energy
loss per forcing cycle follows a power-law and is qualitatively similar to observed ex-
perimental findings. Finally, these results are compared with those obtained from a dis-
crete formulation of the rod including inertial effects. For loading conditions that are
consistent with mechanical joints, the numerical results from the discrete model are

consistent  with

the

closed form predictions obtained in the quasistatic

limit. [DOL: 10.1115/1.1978918]

1 Introduction

In many structures of great engineering importance, such as air
frames or jet engines, the primary source of vibration damping is
often just the frictional damping of interfaces associated with me-
chanical joints. This damping is associated with slip in outer re-
gions of the contact patches and is known to be strongly ampli-
tude dependent (and hence nonlinear) [1,2]. These mechanisms
have traditionally been accommodated in structural dynamics only
indirectly. For instance, one may use a finite element code to
deduce modes and frequencies but then wait for data taken from a
prototype tested at amplitudes of interest to obtain nominal values
for modal damping coefficients.

As the need and expectation of predictive structural dynamics
simulation grows, the requirement of systematically accounting
for the role of joints in the structural response becomes more
urgent [3]. Unfortunately, the most direct method of accommodat-
ing joint mechanics into finite element analysis—meshing the
joint regions finely enough to capture any relevant micro-
mechanics [4,5]—proves to be impractical for large-scale struc-
tural systems because of the prohibitively small time steps re-
quired and/or matrix ill-conditioning that results from the attempt
to resolve the interfaces. A more practical approach is to devise
constitutive models for the overall behavior of individual joints
and to incorporate that constitutive response locally into the struc-
tural model. In the following we discuss a class of models that
captures important qualitative properties of mechanical joints in a
manner that can be integrated into conventional finite element
codes.

The qualitative behavior generally found for joints is illustrated
by two types of experiments. The first is a unidirectional lateral
pull test. At small loads, the force-displacement curve appears
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linear, though some amount of micro-slip in the interface does
take place. At larger loads, as slip increases, the curve begins to
level out and finally, at macro-slip the curve becomes flat. Of
course, if there is a bolt at the core of the joint, that bolt will
eventually come into shear and a new apparently linear portion of
the curve begins.

The second experiment that illustrates the core features of joint
response is a lap joint subject to small amplitude lateral oscillatory
loads. When energy dissipation per cycle is plotted against the
force amplitude on a log-log scale, the result is generally well-
approximated by a straight line, whose slope lies between 2.0 and
3.0 [6,7]. (It is interesting to note that Goodman pointed out forty
years ago that the Mindlin solution for spheres pressed together
and subject to similar small oscillatory loads predicts similar
power-law dissipation with a slope of 3 [8].) Though the departure
of power-law slope of experimental values from the Goodman
value of 3.0 has often been ascribed to nonlinear material re-
sponse [2], recent work [5] indicates that the slope may also de-
pend on geometric nonlinearities reflective of the geometry of the
joint.

This paper considers a simplified model for the prediction of
energy dissipation in mechanical joints and interfaces. The model
represents an elastic rod on a frictional foundation with time-
varying shear loads and spatially varying normal pressure. In the
quasi-static limit, these continuum equations are solved in closed
form to determine the force-displacement relationship and thereby
deriving an expression for the energy dissipation per cycle of
harmonic forcing. Finally, the continuum model is discretized and
the resulting n-dof model is studied for non-zero forcing fre-
quency and as the model order n varies.

Iwan Models. Iwan considered two permutations of a spring
and frictional damper—arranged in series and connected in paral-
lel, sometimes referred to as Jenkins elements [9,10] (see Fig. 1).
The parallel element allows for changes in force with zero change
in displacement while the series element allows for changes in
displacement with zero force change. Moreover, researchers in-
cluding Iwan have considered both series and parallel collections
of each of these elements. This gives rise to four combinations:
series arrangements of parallel elements (series-parallel), series-
series, parallel-parallel, and parallel-series. Of these, the most
well-known systems are parallel arrangements of series elements.
In this configuration, all spring stiffnesses are set to be identical,
the sliders are all connected to ground, and the left node is left
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a) Parallel element (b) Series element

Fig. 1 Iwan elements

free. Iwan’s parallel-series network has had some popularity, pri-
marily because of equations that Iwan presented to deduce model
parameters in terms of gross force-displacement behavior [11]. A
similar analysis has not been available for the series-parallel sys-
tem, and it has been generally assumed that the parallel-series
network is unique in having the useful relationships between
model parameters and gross behavior.

Iwan’s equations for the deduction of parameters for a parallel
network employs the force-displacement curve from monotonic
loading for the boundary of the system. We show in the following
that similarly useful relations can be obtained for another of the
four permutations of Iwan network types: the series-series net-
work. In the following, we do our best to derive equivalent ex-
pressions for the above-defined series-series system. In particular,
the series-series arrangement provides a straightforward point of
departure for considering the dynamical behavior of mechanical
joints. In this work we attempt to relate the characteristics of these
simplified models to experimentally observed behavior from me-
chanical lap joints as well as simulations based on a discrete
model for a rod on a frictional foundation.

Physical model. The physical model under consideration can be
described as a uniform elastic rod of length L held in place by a
frictional surface, as illustrated in Fig. 2. The continuum model
for this system can be written as

Pi Pi
p—(Jﬂ EA~S (x") G(%D, (1)

where #(X,7) is the lateral displacement of the rod at location X

and time 7 while EA is the rod stiffness. The function G(%,7)
describes the force acting on the rod arising from friction. A Cou-
lomb model is used to describe friction and it is assumed that the
coefficient of friction does not vary over the interface. Also, no
distinction is made between static and kinetic coefficients of fric-
tion. More realistic interface models would necessarily consider
generalized descriptions of friction such as mesoscopic asperity
based models [12,13] and friction laws dependent on interfacial
variables, including slip rate [14]. The Amontons law of friction
can be uniquely specified in terms of two quantities: uN(%), the

frictional intensity, and G°4(X,7), the value of the friction force that
would be required to maintain static equilibrium in a state of
sticking. With these, the friction force is described by

G(%.D)
- uN@sgn(i(%7), #(%7) # 0,
- min( G ) . sgn(éeq()?,'t)), (%9 =0.
(2
N(z) ‘ ‘
F@) |BA :
— - I = 0(f)
\\\\\\\\\\\\\\\z\\\\\\\\\\\\
Fig. 2 Physical system. The rod slips over the interval 0<x
<0(H.
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The frictional intensity wN(¥) is the product of the magnitude
of the normal force and the coefficient of friction. Each of these
quantities can depend independently on the spatial position along
the rod. However, as they appear only in the combination u-N, we
do not differentiate between the N(X) and w(x). The function sgn
is the sign of nonzero arguments and zero if its argument is zero.

Finally, G®(%,7), the force required to maintain sticking, is

P
GH(ED) =~ EA° (%) 3)

This model is subject to a suitable initial state and a natural
boundary condition at X=0:

o _&
(0.0 = @

where positive values of F imply the end of the bar is in tension.
We nondimensionalize this model through the transformations:

3 L
X=Lx, 7= ﬁt, =<if ,U,N(g)dg)u,
0

)

EA EA

L
F= ( f MN@)dé)F, (5)
0

yielding the following equations:

jzz(x 1) - jzz(x 1) =G(x,1), xe(0,1) (6)
with:
G {— W)sen(i(e.n), (.0 £ 0,
| - ))sen(G(x,1)), ilx,1) =0,

()

where ¢(x) represents the frictional intensity and in terms of di-
mensional quantities:

f uN(é)dé

0

Finally, the boundary condition at x=0 can be written as
du
—(0.0)=F() &)
ox

A few words concerning this nondimensionalization are in or-
der. The frictional intensity satisfies the constraint:

1
f WEdé=1, (10)
0

which implies that the interface can support a maximum total
(nondimensional) friction force of one. Also, the nondimensional
length of the rod is now unity and time has been scaled by the
period required for a longitudinal wave to traverse the interface.
For typical applications, the joint is expected to extend over a very
small interval and therefore the corresponding frequency will be
much larger than typical frequencies associated with the forcing

F (7). In terms of the nondimensional time 7, the forcing frequen-
cies are expected to be much less than one. Consequently, in many
problems of interest the results do not depend on inertia, but the
presence of inertial terms stabilizes the numerical results. Like-
wise, the dimensional forcing amplitude has been scaled by the
force required to induce gross slip in the interface. Realistic am-
plitudes of the nondimensional forcing F are usually expected to
be much less than one for most structural problems.
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2 Continuum Results

A closed form solution to the continuum problem is unavailable
in terms of elementary functions due to the nonlinear form of the
interfacial friction, except for the case p=0, which we consider in
the following. Under nonzero external force with |F|<1, there
exists an interval 0<x<+{(¢) over which the interface exhibits
slip. We further assume that for the non-slip region, that is, x
> {(t), the displacement profile of the rod is specified. In particu-
lar the quantities:

ou
u(€(n),0),  —((0),1) (11)
ox
are known. Neglecting the inertial terms in the above-noted dif-
ferential equation, over the interval of slip the deformation of the

rod is described as

Fu

22 ) = ¢l sgn(a(x.n), (12)
while the boundary condition at x=0 remains unchanged. Finally,
because of the quasi-static approximation (and sign conventions)

the velocity of slip has sign opposite to the term F, that is:

sen(i(0.1)) = sn(= £(1)) = o) (13)

It is worth noting that this model is closely related to the Menq
model [15,16], which generalizes the frictional interface consid-
ered here to an elastoplastic shear layer at the interface. However,
the present model incorporates spatial variations in the frictional
intensity, whereas the Menq model considers only uniform pres-
sure.

2.1 General Response. We consider general loading condi-
tions applied at x=0. Integration of the governing equation and
application of the boundary conditions yields

T ) = F(1) + o(1) f Ws)ds, (14a)
ox 0

ot) s
u(x,t) = u(€(r),1) - F(t)(e(t) —x) - U([)f J WE)dE ds.
X 0

(14b)

The integral of #(x) will appear throughout the following
analysis. Therefore to simplify the resulting expressions we iden-
tify

J WEdE="V(x), (15)
0

and we note that W(0)=0. In addition, because of the nondimen-
sionalization W(1)=1 (see Eq. (10)). Physically, W(x) represents
the total frictional loading over the interval [0,x), provided the
interval is uniformly slipping. Therefore the above-noted solutions
are written as

M ety = F(1) + o)W (), (16a)
ox

£(1)

ulx,t) = u(€(1),0) — F(1)(€(t) - x) - a'(t)J W(s)ds.

X

(16b)
Evaluating Eq. (16a) at x=£(t), we find

668 / Vol. 72, SEPTEMBER 2005

u
E((f(t),t) =F(1) + o() ¥ (£(2), (17)
and evaluating Eq. (16b) at x=0, the displacement at the end of

the rod is seen to be
(1)
uw(0,1) =u(€(1),t) = F()€(¢) — o(r) W(s)ds
0

(18)

Moreover, the gradient of this terminal displacement with respect
to the external load is simply:

d
dF(t)

(u(0,0) =~ €(1) (19)

2.2 Unidirectional Loading.

2.2.1 Slip Zone. On unidirectional loading from an initially
undeformed state, we anticipate a region of slip of length €,(z), in
which the deformation gradient at x=0 reflects the external force
F(t)=f,(r). (In the following description the subscript “1” indi-
cates the initial loading into the undeformed material.) At the
other end of the slip region, the displacement is zero. Also, be-
cause the right-hand side abuts an undeformed domain, the force
there must be zero also. Therefore:

L0n=fi0. m(€n=0. “en=0, (@0
ox ox
where u,(x,?) is the displacement field resulting from the applica-
tion of F(r)=f,(1).
Applying these boundary conditions we find

1) == o (W (£, (D)),

and the displacement at x=0 may be reduced to

21

(1(t)
uy(0,1) = Ul(t)|:€l(l)lp(€l(t)) - J ‘I’(S)dS} (22)
0

)

with o (1) =sgn(=f;(1)).

As in Iwan’s original work, we may relate the force-
displacement curve to the model parameters, in this case the dis-
tribution of the normal force over the interface. Making repeated
use of the chain rule for differentiation, we obtain

4

0,0)=—4,(1), 23
dfl(t)(u'( )) (1) (23)
as above, and differentiating again, using the definition of W(x):
4’ 1
—(u,(0,1) = (24)
M= )

Knowledge of the force-displacement curve generated by unidi-
rectional loading into undeformed material can be used to identify
the tangential tractions acting at the interface. In practice, Eq. (24)
typically yields reliable estimates for ¢ only for large arguments
since Pu,/ 0f? is hard to evaluate meaningfully for small
argument.

2.2.2 Power-Law Scalings of Dissipation. Say in the vicinity
of x=0, the frictional intensity can be described as ¥(x)=(«
+1)x%, or equivalently:

W(x) = x5, (25)

with @=£-1. The solution to Eq. (16), subject to unidirectional

]Oading iS
X, f] t - l(t) N
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Fig. 3 Force-displacement curve. The dashed curve represents the force-
displacement curve generated from loading into undeformed material [Eq.
(28)]. In each panel the loading amplitude is 0.30.

1 x B+l X
u1<x,t>=f.<t>el<t>[m(1‘(%) )‘(“%)]’

(26Db)
with
€)= (f0D"? (27)
Consequently, the deformation of the rod can be written as
B
u (0,0) = ——f1(0f1(0)]"* (28)

B+1

(The above presented equations apply equally for tensile loading
on the free surface.)

We now observe that the energy dissipation D due to small
oscillatory loads is four times the dissipation due to a single
monotonic loading of the same amplitude:

€,(r)
D=4J 1y (x, 1) (x)dx £1(DFVE(29)

___ 4B
0 S (B+D(2B+1)

This last result is very interesting. If we associate the frictional
intensity #(x) with the normal traction in contact and recall that in
Hertzian contact the normal traction goes as \e”x, then we set 8
=3/2. In that case, the dissipation goes as f‘g/3 , which is reason-
ably close to the experimental values.

2.3 Cyclic Loading. Say that after we have pushed the rod by
a force F(r)= f’; to obtain slip out to a length € I, we then reduce
the applied load, indicated as F(z)=f,(z). Reduction of the loading
induces a new slip zone initiating at the free end of the rod. Notice
that from Eq. (19), at the instant of this reversal the stiffness of the
rod is infinite. Labeling the length of that new slip zone as €5(¢),
within that slip zone, the governing equation remains unchanged.
However, 0'2=—0'T and the relevant boundary conditions for the
deformation gradients become

220.0=1, (30a)
X

220,00 = 2 Es0) = 1 + U (D). (B0D)
dx ox
where uT(x) represents the deformation profile of the rod at the
point of reversal. The length €,(7) of the new slip zone can be
found from Eq. (16a) subject to the above-noted boundary condi-
tions, from which one finds
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Fo(0) + o, W (€,(1)) =fT + 0?‘1’(62(1)) (31)
Therefore, solving for the length of the new slip zone:
1
e =i A220), (2
20'2

provided of course that €,(r) <¢ T Recalling Eq. (19), the force-
displacement curve can be determined to be

B0 | du(0,1) (fl Al ))
.& {EET=-W 20, dfy(1),

f>(2)
0.0 = u(@.0 - J (A 2f2()>dfz() (34)
fi

For our power-law representation of the frictional intensity, we

find
/8
0= (fl fz()) ,

20'2

(33)

(35)

and therefore the force-displacement curve takes the form

- 1+1/8
fT fz(f)) . (36)

23 *
MQﬂMm=u®ﬁM—E:Tm< 200

Over a harmonic cycle of loading, we obtain hysteresis curves as
illustrated in Fig. 3 for S=1.00 and B=1.50. In addition, the
above-presented description of the force-displacement curve can
be applied to more general loading conditions.

2.4 Relationship With Parallel-Series Models. We briefly
review the force-displacement response of parallel-series system.
Iwan showed ([10,11]) that for a parallel-series system (con-
tinuum of series elements in parallel) all having the same spring
stiffness k, but a distribution p(¢) of sliders of strength ¢, the
instantaneous force-displacement relationship is

F(a(r) =k J p(P) it(r) - ¥3(1) |dp. (37)
0
where (1) is the imposed extension and ¥3(¢) is the displacement

of sliders of strength ¢ at time 7.
The break-free force of the system is that which can cause gross
slip to occur:
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0

Equation (37) is nondimensionalized by dividing both sides by

break-free force ¢ and scaling the displacements by &/k:

Flu(r) = J p(d)[u(t) = x (1) ]dp, (39)
0

where ¢=¢/p and p(p)=Pp(dHe). Note that the above also nor-
malized p:

f b p(Ppdp=1, (40)
0

implying that gross slip occurs at an applied load of F=1.

As in the previous analysis, as this Iwan system is loaded from
the underformed state, the slider displacements can be deduced to
be as follows:

xg(1) = u(r) — ¢ for all ¢ <|u(r)], (41)

and

x4(t) =0 for all ¢= |u(?)] (42)

At this initial state we now break the above-presented force inte-
gral into two parts:

u(t)
F(r) = ¢ p(p)dd+K,u(1),

0

(43)

where

K, = f p(d)dd (44)

u(t)

The quantity K, represents the elastic stiffness arising from those
elements which do not undergo slip during this loading.

Having achieved a displacement u* with a force F*, we now
consider the force response as the system is reversed. For each
spring-slider unit, characterized by the value of ¢, the response is
initially elastic as u(r) withdraws from u"to u”"—2¢ Sliding takes
place as u(t) further reduces from u"—2¢. We can use the above
observation to identify those Jenkins elements that are sliding as
the system reaches a value of u(z). This causes us to further divide
Eq. (39):

[ =u(t))2 u
F(u(r) = f ¢ p(d)dd+ f
0 [

u—u())2

#

[u(t) -
— &) |p(P)d+ K, ulr). (45)

With the above-presented definition of F* (Eq. (43)), this can be
written as
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Fig. 4 Discrete model

[u"=u(n))2
F(M(t))—F*=—2f & p(P)d+ (u(t) —u’)| K,»

0

+ f p(¢)d¢] (46a)
[ =u(n)2
[u"=u(n]2
== 2f & pl)dp+ (u(r) —u")| K,
0
[u"=u(n]2
- f p(P)dd (46b)
0

Selecting p(¢)=(2+x) X for small values of ¢, to provide
power-law dissipation at low forces, Eq. (46b) becomes

F(u()) - F = i(—" _2”(’)

1+x
Subtracting off the elastic term, this expression is similar to the
force-displacement curve derived form the series-series con-
tinuum model, given in Eq. (36). In addition, the frictional dissi-
pation per forcing cycle may be expressed as

4

T+ 0B+

As discussed in Segalman [11], in the micro-slip regime the gross
displacement of the Iwan system is dominated by the elastic re-
sponse, so that "~ F*. Therefore, comparing this equation for the
parallel-series model with the equivalent expression for the con-
tinuum rod, given in Eq. (29), we find that the exponents of the
distributions can be related as

2+x
) - Ko(u" —u(r))  (47)

(u")*x (48)

1
B=—o

! 1
X= ’ 1+x

B
Therefore, either the series-series or the parallel-series formula-
tion may be used to generate power-law dissipation scalings aris-
ing from micro-slip. Segalman constructed a parallel-series Iwan
model to have this power-law behavior at low and medium am-
plitude loads and other desirable properties at high loads [17].

3 Discrete Formulation

Although the above-described quasi-static continuum model
can in principle be solved in closed form for arbitrary load histo-
ries, the requirement of keeping track of the slip reversal location
can be cumbersome. This issue is obviated by considering the
corresponding discrete series of Jenkins elements. The direct so-
lution of the resulting nonlinear algebraic equations is notoriously
awkward. We have chosen to regularize the problem by returning
the intertial terms and solving a differential problem in time. Thus
we are led to consider an n-degree-of-freedom discrete approxi-
mation to the continuum model given in Eq. (6) as shown in Fig.
4. The quasi-static result is recovered in the limit of forcing fre-
quencies much less than one (the characteristic frequency of the
system). This finite degree-of-freedom system corresponds to an
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n-element series-series Iwan model. The discretization is obtained
by a collocation method with quadratic comparison functions and
in the following, the displacements are represented as

] 1
u(t) =u(x;,t) with xl:i(i—i), i=1,...,n (49)
n

With this, the discrete equations of motion become

G

1
_’21+”(M1—142) = F(t),
n n
G
—b'i2+n(—u1+2u2—u3) = —2,
n n
(50)
1 G
—ii;i+n(—u_+2u;—u; = -,
n J ( j—1 J j+l) n
1. ( 4 ) G,
—l, +n\——u, | +4u, = 0
n 3 n

The description of the friction force G; follows from the con-
tinuum model, i.e.,

6= - ¢sgn(u(r),
7 - min(|6290)], ¢) sen(GE(1)),

where ¢;=¢(x;) and G represents the force required to maintain
static equilibrium on the i-th element. In particular, G} reduces to

gqunz(ul —uz) +nF(1), (52)

so that in this discrete model, the boundary (i=1) element cannot
support an equilibrium state if

1i(t) # 0,

u(t)=0, D

F(r)

i
(”1_u2)+7 >,

n

(53)

and in the undeformed configuration (#;=0) the boundary element
begins to slip if F(r)= ¢;/n. As n increases, the minimum force
necessary to induce initial slip decreases to zero. A similar model
was considered in [18].

Our focus in this work is to characterize the effect of distributed
friction, as represented by the number of discrete masses in the

(a ui(t)

Fig. 5

model, on the dynamic response of the interface as well as the
energy dissipated by the frictional forces. To accomplish this, we
investigate the response of the above-presented systems to exter-
nal forces of the form:

F(t) = asin(7),

7= wt+ 7(0) (54)

and over one complete forcing cycle, 7 varies over 2 7 regardless
of the forcing frequency. The following numerical investigations
are restricted to 0<w<1 and 0<a<<1, which correspond to
physically common values of these nondimensional parameters.
The results shown in the following are often represented as a
function of 7 rather than time. Finally, the instantaneous (nondi-
mensional) power dissipated by the frictional forces can be ex-
pressed as

Puo) =3 G031,

i=1

(55)

while the frictional work is calculated as the integral of this power
over time.

The numerical results were obtained using a fourth-order
Runge-Kutta method, with an integration step size of Ar
=0.001/n. Coulomb friction is incorporated through a regularized
model proposed by Quinn [19]. To verify the accuracy of the
results, the step size was reduced by a factor of 100 and the
resulting simulated behavior showed no qualitative change (Fig.
4).
In Fig. 5(a) the dynamical behavior of the joint is shown for
0=0.25,=0.25, and n=64. In the figure the displacement of
each element is traced versus 7, where the leftmost curve repre-
sents the terminal end of the chain (to which the forcing is ap-
plied). The asymptotic response is shown for one forcing cycle;
the transient behavior (not shown) was removed by integrating
over five forcing cycles before showing the results. Although this
external load is one-quarter of that expected to initiate slip in the
1-dof model, a slip zone is seen at the end of the chain. However,
only the 25 elements nearest the boundary of the rod experience
slip—the majority of the joint remains stationary throughout the
forcing cycle. In addition, the evolution of the slip interface is
consistent with that predicted from the quasi-static continuum
model described in the previous section.

| IR PR

s 0
-0.1 | -
-0.2 [ .
o 1 i 1 l 1 L 1 l 1 1 1 l'
0 2 4 8
T
(b) ui(t)

Interfacial behavior with n=64(w=0.25, @=0.25). The displacements have been marked

according to the slip velocity—for the lightest points |i]> v, and for the darker points vy>|uj
>V3/n. The velocity of the darkest points is v3/n>|u], with vo=2e(A1)=7.8125X107%. The slip
velocity is in the same direction as that of the end of the interface.
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The power dissipated by the frictional forces is sensitive to the
number of elements in the model. In Fig. 6 the power dissipated is
shown over one cycle of motion for n=8, 16, 64, and 256. In the
simulation the rod was initially at rest in an undeformed state, and
then integrated for five cycles of the external forcing to remove
the transient behavior before generating the observed figures. As
the number of elements is decreased, the trace of the power dis-
sipated becomes less smooth. For n=256 the trace of the instan-
taneous power dissipation is relatively smooth, while as the de-
gree of freedom is decreased to n=8, power is dissipated in
relatively short, large amplitude bursts, indicating significant
stick-slip motions.

Surprisingly, the total work done per unit cycle is rather insen-
sitive to the number of elements, provided a sufficient number are
chosen to admit a time-dependent state, i.e., n>1/«. In Fig. 7 the
frictional work per unit cycle is shown as the number of elements

0.025l|||||r||||l[

0.02

0.015

S 0.01
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L L L L L

0 =

M A S A

W
o

Fig. 7 Frictional
=0.25, #=0.25)

dissipation per unit cycle as n varies (o
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steady-state cycle, t=w7r(®w=0.25,«

varies from n=2 to n=32. As n increases beyond 32, the work
remains fairly constant. For example, at n=32, the work is found
to be W=-0.015233 while as n is increased to 256, the frictional
work becomes W=-0.015070, which represents a 1.1% change
for an eightfold increase in model size. Moreover, the dissipation
predicted by the quasi-static continuum model is W=-0.014882
(see Eq. (29)).

In contrast to variations in n, the work done by the frictional
forces is strongly dependent on «. In Fig. 8(a), the frictional work
is shown as « is varied, holding w=0.25 and n=256 fixed. As
illustrated in the figure, the dissipation is well-represented by a
power law and for this simulation the slope of this curve is ap-
proximately m=2.672. The numerical value closely approximates
the predicted value of m=8/3 obtained from the quasi-static con-
tinuum model.

The work done by frictional forces can also be evaluated as the
forcing frequency varies. In Fig. 8(b) both n and « are held fixed
while 0.01 <w<0.25. Although some dependence on w is seen
(m=0.002), it is slight compared with the variation seen in W as a
is varied. This implies that for forcing frequencies much less than
the lowest characteristic frequency of the joint, the dissipation
predicted by the quasi-static continuum model closely approxi-
mates the response predicted by the model with inertia. Moreover,
the dissipation predicted by the discrete model rapidly approaches
that of the quasi-static continuum model as the number of
degrees-of-freedom (n) increases, provided that n is sufficient to
resolve the slipping at the free end of the chain.

4 Discussion and Conclusions

‘We have considered an elastic rod sliding on a frictional surface
subject to an external force across the structure. When the rod is
assumed massless, the continuum partial differential equations can
be solved exactly, based only on the amplitude of external force
across the rod. This solution can then be used to predict the fric-
tional dissipation and generate force-displacement curves for
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Fig. 8 Frictional work per unit cycle (n=256). The quantity m, represents the
slope of this curve, as determined from linear regression

comparison with experimental data. When mass is included, the
partial differential equations are discretized to develop a finite
degree-of-freedom model.

The above-noted system is appropriate for the modeling of dis-
sipation induced by mechanical joints, provided the forcing am-
plitude and frequency are limited. If the degrees-of-freedom of the
discrete model is sufficiently large (roughly twice the value nec-
essary to allow for micro-slip, ¢ f., Eq. (53)), the predictions of the
massless continuum model agree with those of the discrete formu-
lation for the frictional dissipation per unit cycle. Moreover, in
both formulations the dissipation per cycle is seen to depend sen-
sitively on the distribution of the normal load over the rod, while
for the parameter ranges applicable to joint dynamics it is insen-
sitive to the frequency of the external loading.

Finally, this model yields power-law behavior in the dissipation
per forcing cycle. Specifically, if the normal traction varies as x“
near the free edge of the rod, then the frictional dissipation per
cycle scales with the forcing amplitude to a power of (3
+2a)/(1+a). As a special case, if the normal traction follows a
Hertzian distribution, so that a=1/2, the dissipation per cycle
scales with the forcing amplitude to the 8/3 power which is simi-
lar to experimentally observed results [6,7]. These results indicate
that the model under consideration is a reasonable first step to-
ward the development of physically based reduced-order models
for the incorporation of interfaced-induced dissipation in larger
structural models.
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Mechanics of Bimaterial
Interface: Shear Deformable Split
Bilayer Beam Theory and
Fracture

A novel split beam model is introduced to account for the local effects at the crack tip of
bi-material interface by modeling a bi-layer composite beam as two separate shear
deformable beams bonded perfectly along their interface. In comparisons with analytical
two-dimensional continuum solutions and finite element analysis, better agreements are
achieved for the present model, which is capable of capturing the local deformation at
the crack tip in contrast to the conventional composite beam theory. New solutions of two
important issues of cracked beams, i.e., local buckling and interface fracture, are then
presented based on the proposed split bi-layer shear deformable beam model. Local
buckling load of a delaminated beam considering the root rotation at the delamination tip
is first obtained. By considering the root rotation at the crack tip, the buckling load is
lower than the existing solution neglecting the local deformation at the delamination tip.
New expressions of energy release rate and stress intensity factor considering the trans-
verse shear effect are obtained by the solution of local deformation based on the novel
split beam model, of which several new terms associated with the transverse shear force
are present, and they represent an improved solution compared to the one from the
classical beam model. Two specimens are analyzed with the present model, and the
corresponding refined fracture parameters are provided, which are in better agreement

with  finite

element

analysis ~ compared  to  the  available  classical

solutions. [DOI: 10.1115/1.1978920]

1 Introduction

A bi-material or bi-layer system is a common configuration in
structural applications, and it is usually manufactured by mono-
lithically forming the two parts together. Interlaminar delamina-
tion is one of the most popular failure modes in this type of
layered structures. A split bi-material beam is resulted from the
delamination of a bi-layer structure. Requirement of effective
analysis of the split beam is encountered frequently, such as the
delamination buckling of laminated composites [1], data reduction
technique of fracture tests [2], crack identification [3], and vibra-
tion analysis of delaminated structures [4]. Conventional analysis
of split beam in the literature simulates the cracked segment of the
beam as two separate beams and the uncracked segment as one
composite beam. At the connection of the cracked and uncracked
segments where a joint is formed to connect three beams, the
cross sections of the three beams are assumed to remain in one
plane and perpendicular to the mid-plane of the virgin beam. This
conventional model neglects the elastic deformation of the joint,
such as the root rotation at the crack tip [5] and thus forms a rigid
connector. Extra errors are introduced, and unfavorable results are
obtained by this conventional split beam model, such as the un-
conservative loading of delamination buckling of composites [6],
under-evaluated energy release rate of fracture [5], and rough dy-
namic analysis at the crack tip [3]. The reason for this unfavorable
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feature of the available split beam model is explained by the na-
ture of the assumptions used in the beam model, which are unable
to describe the severe local deformation at the crack tip of the split
beam. In the cases where the local deformation is of no interest or
of little importance, the conventional split beam model is appli-
cable; however, in the cases where the local deformation is sig-
nificant, a new and improved model is required to account for the
deformation at the crack tip.

In this study, for the convenience of application, a closed-form
solution of a split bi-material beam is presented first, of which the
local deformation at the crack tip is captured by modeling the split
beam as a bi-layer shear deformable beam system. Compared with
the conventional composite beam theory, the proposed novel split
bi-layer beam model predicts more accurate stress and deforma-
tion distributions near the crack tip. Then, the present solution is
applied to solve two important issues of cracked bi-layer beams:
local buckling analysis and interface fracture analysis.

2 Split Bi-Layer Beam Theory

Consider an interface fracture problem of Fig. 1, where a crack
lies along the straight interface of the top beam “1” and bottom
beam “2” with thickness of /; and ,, respectively. Two beams are
made of homogeneous, orthotropic, and elastic materials, with the
orthotropy axes along the coordinate system. The length of the
uncracked region L is relatively large compared to the thickness of
the whole beam /+h,. This configuration essentially represents a
crack tip element [7], a small element of a split beam, on which
the generic loads are applied, as already determined by a global
beam or beam analysis. It is assumed that the lengths of cracked
and uncracked parts of the beam are relatively large compared to
the bi-layer beam thickness. Therefore, a beam theory can be used
to model the behavior of the top and bottom layers. Plane strain
formulation is used in this study.
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Fig. 1 A bi-layer beam system under generic loadings

In the conventional split beam analysis [8], this problem is
modeled as three classical beams: the top beam in the cracked
region, the bottom beam in the cracked region, and a single com-
posite beam of the whole uncracked region. As shown in Ref. [9],
it is not appropriate to model the uncracked portion of the lami-
nate using a single beam element in order to capture the actual
shear deformation. To this end, Wang and Qiao [10] recently mod-
eled the uncracked region as two separate beams: the top beam
“1” and bottom beam “2” instead of only a single beam. These
two beams are perfectly bonded along their interface to keep the
continuity of displacement; while the two beams in cracked region
deform separately. The first-order shear deformation theory or
Reissner-Mindlin plate theory is used to account for the transverse
shear deformation.

2.1 Analysis of a Bi-layer Beam System. According to
Reissner-Mindlin plate theory, the deformations of two beams
have the form:

Ui(xinzy) = ui(x) + z;0(x;) (1)

Wilx;z;) = wilxy) ()

where subscript i=1, 2, representing the beams 1 and 2 in Fig. 1,
respectively. x; and z; are the local coordinates in beam i. The
strains in these two beams are given as

0_ du; _ d¢;
&€=—, K=—-,

; dw;
=it — 3
"odx dx ’yl” éit dx ®

The constitutive equations are written in the conventional way as

du;

(N,-) (Ci 0) dx ( dw,.>

M, =0 )\ dg, , Q=B ¢ ) (4)
dx

where N;, Q;, and M, are, respectively, the resulting axial force,
transverse shear force, and bending moment per unit width of
beam i;C;,B;, and D; are the axial, shear, and bending stiffness
coefficients of the beam i under the plane strain condition and
given as

E,h; Eh}
Ci=—""—, B;=«Gh;, D;= . (i=1,2),
1- ViziVoxi ]2(1 = PrziVexi
where E;,G,,;, Vy,;, and v,,; are the longitudinal modulus, trans-

verse shear modulus, and Poisson’s ratios of beam i. « is the shear
correction coefficient chosen as 5/6 for a rectangular section in
this study. For a plane stress problem, the corresponding stiffness/
compliance parameters must be used.

Considering a typical infinitesimal isolated body of bi-layered
beam system (Fig. 2), the following equilibrium equations are
established:

le(X) _ sz(x) _
dx ), dx

- 7(x),
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Fig. 2 Overall equilibrium of bi-layer beam system
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where N;(x) and N,(x),Q(x) and Q,(x),M(x), and M,(x) are the
axial forces, transverse shear forces, and bending moments in lay-
ers 1 and 2, respectively; &, and h, are the thickness of layers /
and 2, respectively; o(x) and 7(x) are the interface normal (peel)
and shear stresses, respectively.

At the interface of the bi-layer beam system, the displacement
continuity requires

h h
Ml—;l¢1=u2+?2¢2, (6)

Wi =Wwy (7)

Differentiating Eq. (6) with respect to x once and then substituting
it into the first equation of Eq. (4) yield

N, (x) ﬁMl(x) _ Nz(x) @Mz(x)
- =2y (8)
C, 2 D, C, 2 D,

Considering the global equilibrium conditions in Fig. 1, we have

Ni+Ny=Njg+Ny=Nr 9)

0,(x) + 0x(x) = Q19+ Q20 = Or- (10)

hy+h, hy+h,
M +M;+N, 2 =M10+M20+NIOT+QTX=MT(X)7

(11)

where Njo,Nayy, Q19,Q020, and Mg, M, are the applied axial
forces, transverse shear forces, and bending moments, respec-
tively, at the crack tip (see Fig. 1); Ny, Qr, and My are the total
resulting applied axial force, transverse shear force, and bending
moment of the bi-layer beam system about the mid-plane of the
layer 2 (Fig. 1), respectively.

For simplicity, there are no distributed loads applied to the
composite beam, and therefore, Ny and Qp are constant and My is
a linear function of x. Substituting Egs. (9) and (11) into Eq. (8)
gives

Nr  hy
N —éEM = —+ —M, 12
N, — M, c, 2D, T (12)
where
h h
b= - (13)
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2.2 Conventional Composite Beam Theory. Conventional
composite beam theory is used most widely in the literature to
analyze the bi-layer beam, in which the cross sections of two
sublayers are assumed to remain in the same plane after deforma-
tion, i.e.,

¢1(x) = y(x) (15)
Differentiating Eq. (15) with respect to x gives
M, M
—L-=2 (16)
Dy D,

By substituting Eq. (16) into Eq. (12) and considering Eq. (11),
the governing equation of composite beam model is obtained as

((L L) (hy + o)
D, )"

1 1\ h 1 1 \N
F(x) = (( ) 2 +£>MT+(—+ ) L
D, "D,)2D, " D, D, D,)C,

The resultant forces of the beam are thereby obtained as

S)Nl(X)=F(X), (17)

where

(D, + D,)hy + éD\D,
2Dy(Dy + Dy) 1+ €D\ Dy(hy + hy)
2(D,+ D,)
+ Nr,
Cy(2(Dy + Dy)n+ (hy + hy)D 1 §)

1 h )
£2D, Or.

Nic=

0 _<(1}+ﬁ) (Dy + Dy)hy + D Dy§
T\ ¢ 2 )2Dy(Dy + DY)+ ED\Dy(hy + hy)

1{N h
llNlC__<_T+_2MT)
3 3

0rc=0r—

M1C= (18)

Nyc=Nr=Nic,
hy+h,
5 ic

Qv Moyc=M¢r—M,¢c

The subscript C is used to refer to the conventional composite
beam solution.

2.3 Shear Deformable Bi-layer Beam Theory. Although the
conventional composite beam model is very simple and widely
used, it is fairly approximate in nature due to neglecting the local
deformation at the crack tip. To account for this deformation, a
shear deformable bi-layer beam theory [10] has recently been de-
veloped, in which the restraint on the rotation in Eq. (15) is re-
leased, i.e., each sub-layer in the virgin beam portion rotates sepa-
rately. By using Egs. (5)—(7), the governing equation for this
model is obtained by Wang and Qiao [10] as

(e all S (55
Bl+32 Ty ) Tae T DI+D277

h
N (hy +hy)

Compared to the governing equation of conventional composite
beam model [see Eq. (17)], Eq. (19) has an extra second-order
differential term, and the solution of Eq. (17) is a particular solu-
tion of Eq. (19). Therefore, the resultant forces of the sub-beams
are given as [10]

f)Nl(X)=F(X) (19)

Nix)=ce™+N,., 0,(x)= <§ +%>cke"kx+ Oics
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M,(x) = gce"’“+ M,

h
Ny(x) ==ce™+Nye, Qy(x) = (7_57 + ;l)Ckeka + 0Osc,
hi+h
M2=—<1]+¥)C€_M+MZC, (20)
¢ 2
where
e \/Ble(z(Dl+D2)n+D1(h1+h2)§> _ @M +hN)E

D\Dy(B, +B,)(2n+ h§) ' hié+2n

(21)

where k is the decay rate determined by the geometries of the
specimen and properties of materials, and

M= MIO_M1C|x=()’ N= NIO_N1C|x=()7 0= QIO_Q1C|x=()

(22)

Nic,M,¢, and Q¢ are given by Eq. (18). Equation (20) shows
that the shear deformable bi-layer beam solution consists of two
parts: the exponential terms which describe the local effect and
the conventional composite beam solution terms which are domi-
nant away from the vicinity of the crack tip. Equations (20) and
(21) also show that the exponential terms in the present bi-layer
beam solutions are only determined by M,N, and Q.

It should be pointed out that when the bi-layer beam system is
homogeneous and symmetric about the interface, {=0 and mo-
ment M and axial force N decouple (Eq. (12)). This special case
was solved by Bruno and Greco [9]. In the present model, we only
need to rewrite the expression of moments and shear forces.

2.4 Rotational Flexible Joint Deformation Model. Consid-
ering the constitutive equation of the beam given by Eq. (4), we
have

et s m )
wirmoia [ [0,
1 1 i Dl . D

1
_kx L
ce M
=7 +J' —C ix
¢kD, ) D

(23)

Note that

J_dx bc(L) = p(x), (24)

where ¢ is the rotation angle of the uncracked portion based on
the conventional composite beam model, i.e., both the top and
bottom beams have the same rotation. When L is very large (see
Fig. 1), we have

&1(L) = (L) = (L) (25)
Therefore, combining Egs. (23) and (24) yields
e e (2M + yN)
h1(x) = ¢y c(x) - § kD d’lc—le hé+r2y 7 (26)

In the same way, the deformation at the crack tip (x=0 in the
given coordinates in Fig. 1) is then obtained by
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(a) Conventional rigid joint (b) Present rotational flexible joint

Fig. 3 Joint (crack tip) deformation model
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Equation (27) gives a new solution of deformation of the joint
(crack tip), which is different from the conventional rigid joint as
shown in Fig. 3. In the conventional bi-layer beam analysis [Fig.
3(a)], the compatibility conditions require the rotations of three-
beam (i.e., two cracked beams and one uncracked bi-layer beam)
segments at the joint to be the same. Thus, the joint is rotationally
rigid, leading to the underestimated crack tip deformation. Equa-
tion (27) allows the relative rotation between the top and bottom
beams [as shown in Fig. 3(b)] and therefore describes a rotation-
ally flexible joint (crack tip).

2.5 Verification and Comparison. To evaluate the present
split bi-layer beam model, especially the crack tip deformation
model of Eq. (27), a double cantilever beam (DCB) specimen
(Fig. 4) used widely in the interface fracture is examined numeri-
cally by finite element analysis (FE). The specimen is modeled by
a commercial finite element package ANSYS as a two-
dimensional (2D) problem with 8-node isoparametric plane ele-
ment (PLANES2). The specimen has a symmetric geometry with
alhy=16,a/L=1 and h;=h,. Two scenarios of materials are con-
sidered in the finite element analysis: (a) the top and bottom
beams are made of the same materials (E;=E,=1,v,=1,
=0.3,G,=G,=E,/7) simulating a symmetric DCB configuration,
and (b) the top and bottom beams are made of different materials
(E1=1,v,=1,=0.3,G,=E,/7,E,=5E;,G,=5G,) representing an
asymmetric DCB specimen. Figure 4 compares the deformations

Fig. 4 Double cantilever beam (DCB) specimen
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Fig. 5 Comparisons of joint deformation at the crack tip

calculated by the FE analysis, present solution [Eq. (27)], and
conventional composite beam model at the crack tip of the given
two DCB specimens. A considerable rotation at the crack tip is
found by the finite element analysis in contrast with the zero ro-
tation predicted by the conventional composite beam model for
both the symmetric and asymmetric DCB specimens. Figure 5
shows that a significant amount of root rotation at the crack tip is
captured by the present analysis for both the symmetric DCB
specimens (88% of FE result) and asymmetric DCB specimen
(70% of FE result); while the conventional composite beam analy-
sis just simply excluded this rotation and thus produces a rigid
joint model (Fig. 5).

An approximate 2D elasticity solution of crack tip rotation was
obtained by Sun and Pandey [5] for a DCB specimen subjected to
the opposite bending moments. As a comparison, the crack tip
rotations obtained by the present study [Eq. (27)] and by Sun and
Pandey’s solution [5] are shown in Fig. 6. It is observed that the
present solution is about 80% to 92% of the approximate elastic
solution for a large range of thickness ratio. Note that the solution
in Ref. [5] was only valid for isotropic, homogeneous materials;
while the present solution of Eq. (27) is applicable to a general
orthotropic bi-layer beam system.

Compared to the exact finite element solution or 2D approxi-
mation, the present solution seems to underestimate the rotation at
the crack tip. This may be due to the assumption of the first-order
displacement field in Egs. (1) and (2) adopted in this study. The
actual displacement field is more complex at the crack tip as dem-
onstrated by the finite element solution (Fig. 5), and therefore, a
higher order beam theory may be required to better describe the
deformation of the crack tip in order to improve the present solu-
tion. However, the simplicity of the analytical solution will be
lost.

SEPTEMBER 2005, Vol. 72 | 677



0.94
o
o« 0.8 .
: —
&
<\ 0.861 C
<
i
=
0821 (¢] -9, )P : Present solution
(¢1 -0, )S : Sun and Pandey’s solution [5]
0.78 ‘ .
0 5 10 15
ha/hy
(@) Total rotation at the crack tip
0.98
o 0.941
?,V. L
Y@ 0.91
T 0.86
=
0.82
0.78 T ; r
0 5 10 15 20

ho/hy
{b) Root rotation of beam |

Fig. 6 Comparison of crack tip rotation

3 Application Examples

In this section, two application problems (i.e., local delamina-
tion buckling and interface fracture) using the proposed split bi-
layer model are solved to show the significant effect of local de-
formation at the crack tip. The closed-form solutions based on the
present model are given for the convenience of reference since
they are not available in the literature.

3.1 Local Delamination Buckling. Local delamination buck-
ling is a common failure mode of laminated composites. Typical
analytical solution of local delamination assumes the clamped
boundary conditions at the delamination tip [1]. The deformation
at the delamination tip is ignored in the assumption as shown in
Fig. 7(c). Vizzini and Lagace [11] used a beam on elastic founda-
tion model to study the effect of the deformation conditions at the
delamination tip on the delamination buckling via Rayleigh-Ritz
energy method. Here, a new closed-form solution of local delami-
nation buckling considering the delamination tip rotation is pre-
sented. According to Eq. (4), the governing equation of local
buckling can be written as

d3W1 Pl dWl
—3+——:
dx P\ dx
Dl 1-—
1

(28)

Due to symmetry of the delamination to its center line, the solu-
tion of Eq. (28) can be written as

¢ =—c N (sin(A1x)), (29)

wy = ci(cos(Ayx) = 1),

where
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Fig. 7 Local buckling of laminated composites
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Using the forces at the delamination tip [Fig. 7(c)], the root rota-
tions at the delamination tip x=a can be obtained by Eq. (27) as

\2= (30)

27 27 do
¢1=~ =- -4 6y
kD (hé+27) k(hié+2m) dx
Substituting Eq. (31) into Eq. (29), we have
27y
tan(A\ya) =— ——————A\ 32
an(\a) Kngr 2! (32)

By solving Eq. (32), \; is obtained and then the local delamina-
tion buckling can be written as
D,
Pl=——— 33
1 )\% Dl ( )
1+——
B,
Normalized by Euler value, Eq. (33) becomes
2

_l - l-il-us/./dz’ (34)
where
5 _ P ™Dy
1_PE’ E=T 0
D, 7 E, (h\? N\
TR 1201 —V13V31)K_G1(;) - AT

The effect of delamination tip rotation can be shown by a nu-
merical example presented by Fig. 8 (where i;=1 for the conve-
nience of calculation). Both isotropic and orthotropic materials are
considered. The orthotropic material in the calculation is obtained
by reducing the shear modulus of the isotropic materials by 10
times. Figure 8 shows that the conventional clamped boundary
condition overestimates the local buckling load, especially when
the shear modulus of the material is relatively low, which is the
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case for the laminated composites. In other words, the local buck-
ling loading evaluated by clamped boundary condition is not con-
servative.

3.2 Interface Fracture. Interface cracking is one of common
failure modes in multi-layered structures. Typical examples in-
clude delamination of composites laminates, debonding of adhe-
sive joints, and decohesion of thin film from substrates. The shear
deformation in the cracked and uncracked regions is not consid-
ered in the existing model since the classical beam or plate theory
was basically used [12,13]. As a result, the ERR is always under-
estimated by this method as evidenced by Davidson and
Sundararaman [14]. As a matter of fact, the shear deformation
effect on the ERR for anisotropic materials with relative low
transverse shear modulus (e.g., polymer composite laminates) is
even more significant as shown in Bruno and Greco [9], where the
portion contributed by the shear deformation was found to be
more than half of the total ERR for an orthotropic double canti-
lever beam specimen. Therefore, it is necessary to account for the
shear deformation in computation and prediction of the ERR, es-
pecially when the materials with relatively low transverse shear
modulus and moderate thickness are concerned. Notable effort to
incorporate the shear deformation into the ERR was made by
Bruno and Greco [9]. However, the closed-form solutions of the
ERR are only obtained for certain simple configurations. In this
study, the new solution of interface fracture problem shown in
Fig. 1 considering transverse shear are obtained based on the new
split beam bi-layer model developed in Sec. 2.

3.2.1 |Interface Fracture Solution With Transverse Shear
Deformation. J-integral [15] can be used to calculate the energy
release rate of interface fracture problem shown in Fig. 1:

Journal of Applied Mechanics

l(fﬁ+£%+g?+9_%+ﬁ+%%

J==
2\C, C, By, B, D, D,
x=0
-20,¢1 - 2Q2¢2> , (35)
x=L

which can be further simplified as

1
J= E(CNNQ + CyM? + CyyMN + CQQ2 =20(¢1(0) = ¢,(0)))

(36)

where
ekl gt L Ll 1 o th
G G Dy D, By B, D,
(37)

It can be seen that the ERR depends on not only the three
loading parameters but also the relative rotation at the joint (crack
tip). Equation (36) clarifies the major argument made by Li et al.
[16] on the effects of shear on interface fracture in the layered
materials. In their study, Li et al. [16] pointed out that the crack tip
deformation only affects the shear components of the ERR. Two
terms of transverse shear Q are present in Eq. (36) which repre-
sent the transverse shear components of the total ERR of the in-
terface fracture: (a) the stable-state part (1/B,+1/B,)Q%/2 which
is the contribution of the shear deformation in the cracked region,
and (b) —Q(¢;(0)—¢,(0)) which is the contribution of the shear
deformation in the uncracked region of a bi-layer beam. Only the
latter part (part (b)) of the transverse shear component is depen-
dent of the local deformation at the crack tip, and more exactly,
only dependent on the relative rotation of two sublayers at the
crack tip. It should be noted that the local deformation is not a
contributor to the ERR physically. As a matter of fact, the relative
rotation in Eq. (36) is a reflection of the complex local displace-
ment field, and it disappears once the conventional composite
beam model is used.

Substituting the solution of rotation at the crack tip (Eq. (27)),
we have

1
J= E(CNNz +Cp0? + CyyM?* + CyyyMN + CyoNQ + CpoMQ)

(38)

where

1 1 11
Cro=H 3+ i Cug=24{ 5+ 5

Equation (38) is similar to the expression of the ERR obtained by
Suo and Hutchinson [12], except that three new terms associated
with Q from the contribution of transverse shear to the total ERR
are introduced. In Eq. (38), CQQ2/2, which is due to the trans-
verse shear deformation in the cracked region, is present; while
CnoNQ/2 and Cy oM Q/?2 arise from the shear deformation in the
uncracked region. The closed-form solutions obtained by Bruno
and Greco [9] for geometrically symmetric plates can be easily
derived using the present formula of Eq. (38) by substituting the
specific loading and laminate properties.

Based on the split beam model developed in Sec. 2, the ERR
can be decomposed as modes I and II [17]:

_f1r 1 MNVV Lo s
GI_2(BI+BZ)<Q+k<M+ o )) —25QQC, (39)

1 1
(M — 3N)* = 55NN2,

T hé+2u (40

GII

where
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oy=7é+n=—F++——+——, Sp=—+—,
4D, 4D, B, B,

_2(Mé-Nny)
7 méEv2y

While following the procedure described by Suo and Hutchin-
son [12], the stress intensity factor K is obtained as [10]

[+257)
. Qc=-0-kKM+=

K=K, +iK,= (VCyN - ie"C\yM — ie""\C,0) %hj"se"w
v
(41)

where P is defined in the same way as in Suo and Hutchinson [12]
and

C (&
sin(y) = ——=, sin(y,) = —e= (42)
2NCCy 2NC\Cy

It is convenient to use the combination Kh, as suggested by Rice
[18] and define

Kh,'® = Ky + iKy = |K|e' (43)

Then the individual stress intensity factors are given by
K= %(\J'C—NN cos(w) + VFMM sin(w + ;) + V’FQQ sin(w + 72)),
\‘\‘
(44)
Ky= %(V’FNN sin(w) — \“"C—MM cos(w+ y,) — \s“’C—QQ cos(w + 72))
N

(45)
The phase angle ¢ defined in Eq. (43) is given by

Y= tan"1< \e“’a\,N sin(w) — \C_MM cos(w+ y)) — V'C—QQ cos(w+ y,)
VCAN cos(@) +\CyM sin(w -+ y1) + VCoQ sin(w+ y,)

where the bi-material constant & was defined in Ref. [10].
Note that we can rewrite the global decomposition expressed by
Egs. (39) and (40) in term of stress intensity factor:

K= %(V’?QQC‘“'VEVNC) =[Kgle'e, (47)
v
where
(5N, [G
b= arctan( \—N C) = arctan( —H) (48)
Y 5QQC GI
Equation (41) can be rewritten as
re ry P s i iw, 7,-ie
K:(V5QQC+W5NNC),—Eh, 1 = K e (49)
v
By comparing Egs. (49) and (41), we obtain
w1=w+7/2—757 (50)

By following the same definition of the stress intensity factor as in
Eq. (43), a relation between the local and global stress intensity
factor is obtained as

Kh' = |Kle" = K; + iK;; = Kge'™ (51)

It appears that the local SIF can be obtained by shifting the global
SIF phase angle by w;. Thereby, w; can be regarded as the shift
angle from the global to local decomposition, which represents
both the geometry and material mismatches along the interface as
shown in Eq. (50). Based on the numerical results of Davidson et
al. [7], the phase shift angle w, can be easily obtained. It is inter-
esting to point out that w; and the mode mix parameter () defined
by Davidson et al. [7] were recently proved to be identical [17].

3.2.2  Fracture Parameters for Interface Fracture Specimens.
Based on the above-presented analysis, fracture parameters of
several typical fracture test specimens are derived and presented
in this section. Comparisons have been conducted in this section,
which show the improvement of accuracy offered by the present
study.
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) , (46)

3.2.2.1 Asymmetric Double Cantilever Beam. An asymmetric
double cantilever beam specimen (Fig. 4) is a simple but effective
specimen for measurement of polymer/polymer and polymer/non-
polymer bi-material interface fracture toughness. The ERRs from
the global decomposition are expressed as

Gy= 2 oy(1 +ka P Gy=28 gzi (52)
TR T g2y
1 P2a?
G==38y)(1 +ka)*P* + 26y ——— 53
5 Q( a) € (h1§+277)2 (53)
The SIFs from the local decomposition are expressed as
P J’_ . J'_ .
K =- TE(VCMa sin(w + ;) + VCy sin(w + y2))P, (54)
v
P (= [~
Kn:TE(VCMa cos(w+ ;) + VCq cos(w + 72))P (55)
N
lCy +y)+VC, +
e tan"( \ la cos(w+ y,) \’_Q cos(w y2)> (56)
VCya sin(w + ;) + VCy sin(w + y,)

Improvements both in the ERR and phase angle provided by the
present solution Egs. (52) and (56) are demonstrated in Fig. 9.
Figure 9 compares the classical solution and the present solution
[i.e., Egs. (53) and (56)] with the finite element analysis (FEA)
results of Li et al. [16] which is assumed as exact solution in this
study. A value of 0.3 for Poisson’s ratio is chosen for both the
materials, and an excellent agreement is achieved when compared
to the FEA results. Classic solution underestimates the total ERR
significantly when the crack length is small due to the reason of
neglecting the transverse shear effect; while the present solution is
much closer to the FEA due to consideration of transverse shear in
the calculation [Fig. 9(a)]. As discussed in Sec. 2.5, the present
bi-layer beam model underestimates the actual root rotation at the
crack tip. Consequently, the present solution of ERR is a bit lower
than the exact solution (finite element solution) as demonstrated
by Fig. 9. It can also be observed that the transverse shear has a
significant effect on the phase angle when the crack length is
small. The present method can capture this feature while the clas-
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sic solution simply ignores it.

If the top and bottom beams have same geometry and material,
the specimen becomes the widely used double cantilever beam
(DCB) specimen. In this case £=0 and therefore:

Gi= Loyt ekappr=DE B W )
== +ka)’PP=—+—+ ,
ma"e D, B, \B,D,

Gp=0 (58)

The above equation is the same as the solution obtained by Bruno
and Greco [9]. Compared with the conventional first-order shear
deformation solution of Gj, the third term in Eq. (57) is new, and
it represents the contribution of transverse shear in the uncracked
portion of beam to the total mode-I ERR of the specimen.

3.2.2.2 Single Leg Bending (SLB) Specimen. A comprehensive
study of this test was performed for a bi-material specimen by
Davidson and Sundararaman [14] in which a closed-form solution
of ERR was obtained by the crack tip element (CTE) analysis for
isotropic materials. When testing orthotropic materials, however,
the existing closed-form solution is not quite as accurate as it is
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Fig. 10 Single leg bending (SLB) specimen

for isotropic one due to the more pronounced effects of transverse
shear deformation. Therefore, a need exists for more accurate
evaluation of fracture parameters of the test specimen.

By applying the results of this study to the single leg bending
(SLB) or modified ENF specimen (Fig. 10), the ERRs, SIF are
given as

1 k\? h 1, \?
GI=£6Q<1+ ) (1 —(17+—‘)AM+ 2 ) (Pal2)?,

a ¢ 2 £2D,
(59)
11{ h 2
GH=__ ——Pal2 ’ (60)
2 5y\2D,
P = = 7 L hy .
K=7<\“‘CA cos(w) + VC, (—1+—A ———)sm(w
BRI A N W E g,
—1 7 7,) 1 hy ) , )
[Co—|— 1+ 2+ 2 )Ay-——= Pa,
+ )+ Qa< +<§+§ M ¢2D, sin(w + y,) | Pa
(61)
2 - 7 L hy
K =ﬁ(\“‘C N sin(w) — C (—1+—A ———)cos(w+ )
i} 22 N M ¢ M £2D, 4l
— 7 h 1 h
- \sCQ(— 1+ <E + E‘)AM— Ez—l§2>cos(w+ 72))Pa (62)

Figure 11 compares the present solution of ERR with classic
solution (CTE) and finite element solution obtained by Davidson
and Sundararaman [14] for three types of bi-material interface
homogeneous, aluminum/niobium and glass/epoxy, which essen-
tially “span” the range of the material property mismatch ratios
which one would expect to encounter in practical applications.
Details of material properties and specimen geometry are given in
Davidson and Sundararaman’s paper [14] and therefore omitted
here for brevity. The ERRs calculated by the present solution and
CTE are normalized by the finite element solution which is as-
sumed as exact solution in this study. Figure 11 shows that CTE
underestimates a maximum 13% of ERR by neglecting the trans-
verse shear deformation. A significant improvement of accuracy
has been achieved by present solution in which the ERR is only
underestimated by a maximum of 3% due to the same reason
aforementioned.

4 Conclusions

By modeling a bi-material split composite beam under plane
strain deformation subjected to general loading as two separate
shear deformable beams bonded perfectly along their interface, a
novel split beam model which accounts for the local effects is
presented in this study. The relatively close comparison of the
present model with finite element analysis demonstrates that the
proposed split beam model can capture the local deformation at
the crack tip of bi-material interface, and therefore, it is more
accurate than the conventional composite beam theory. This
unique feature of the new split beam model is then applied to
solve the local delamination buckling and interface fracture prob-
lems of bi-layer beams. It has been shown that the local buckling
load considering the root rotation at the delamination tip is lower
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Fig. 11 Effect of shear deformation on ERR of SLB for a/(h;+h,)=8.33 and a/L=0.5

than the existing solution of which the root rotation is ignored.
The transverse shear effect is successfully incorporated into the
energy release rate (ERR) and stress intensity factor (SIF) based
on the novel split beam model. Two conventional interface frac-
ture specimens are analyzed by the present interface fracture so-
lution. New ERR and SIF are obtained, of which the transverse
shear deformation is taken into consideration. Compared with the
existing classical solution, the present explicit solution shows a
better agreement with finite element solution due to the inclusion
of the transverse shear effect. This suggests that the contribution
of transverse shear deformation is significant and therefore should
be included in the refined analysis, especially for the specimens
with relatively lower transverse shear modulus and moderate
thickness.
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Struts

fection

1 Introduction

Sandwich construction is a mass efficient structural form used
extensively in astronautic [1], aeronautic [2,3], and marine appli-
cations [4]. They are used as members for general loading situa-
tions: bending, shear, and axial loading. In axial compression,
however, there are serious structural integrity issues precisely be-
cause of their inherent efficiency; their susceptibility to highly
unstable interactive buckling phenomena in practical situations is
widely accepted [5,6]. Previous work developing a nonlinear
variational model, accounting for the severe interaction between
overall (Euler-type) and local modes of buckling that leads to
highly unstable localized buckling [7], has identified the problems
with using orthotropic core materials [8], and with having pre-
existing defects in terms of lack of straightness in the face plates
[9] and face-core delamination [10,11]. These effects do not sig-
nificantly affect the linearly evaluated critical load capacity, which
have been historically well understood [12], but they can have
severe implications on the postcritical load-carrying capacity of
the sandwich strut concerned. Moreover, the nonlinear effects can
seriously question the practical value of linear eigenvalue analysis
for these cases—the maximum capacity of the structural compo-
nent being well below the linearly evaluated critical load and
therefore significant factors of safety would need to be applied in
relevant design rules.

A further enhancement to this sandwich structure model is pre-
sented in this paper where the stiff face plates now have the pos-
sibility of having differing thicknesses, hence, introducing a de-
gree of monosymmetry in the cross section [13], which is a
common way of modeling corrugated sandwich panels in indus-
trial buildings. Comparing the critical buckling behavior of an
Euler strut with a doubly symmetric cross section against a mono-
symmetric one, it is well known from classical work [14] that the
respective levels of the linear buckling load may differ but their
postbuckling behavior would still be symmetric, assuming of
course that there is no possibility of local buckling within the
cross-section itself. However, and here lies the key point, if local
buckling is possible then the situation changes significantly; any
local buckling on one side of the cross-sectional neutral axis will
differ markedly from the other side due to the different configu-
ration of the section on either side of the neutral axis. For the
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Asymmetric Secondary Buckling
in Monosymmetric Sandwich

An interactive buckling model for sandwich struts accounting for buckle pattern local-
ization is extended to cover such struts with differing face plate thicknesses. Although this
does not affect the critical buckling characteristics of the structure, there is a significant
change in the postbuckling behavior; formerly symmetric secondary buckling and imper-
sensitivity
asymmetric. [DOI: 10.1115/1.1979513]

characteristics  lose  this  quality as  both  become

sandwich structure, if the face plates have different thicknesses
then this introduces the possibility of the local mode of one of the
face plates interacting with the overall mode of buckling in dif-
fering degrees depending on the initial sign of the critical mode.
The result of this is that although the primary postbuckling re-
sponse is still symmetric—given that the overall mode of buckling
is the first instability—further deformation introduces a second
instability that leads to localized buckling in the face plate with
greater compression; the magnitude of overall buckling displace-
ment required to trigger the second instability relating to the thick-
ness of the face plate in more compression. The result of this is an
asymmetric postbuckling response following the second instabil-
ity with the consequent imperfection sensitivity also becoming
asymmetric.

The present paper begins with the development of the interac-
tive buckling model with the new feature of cross-section mono-
symmetry. The formulation is based on the variational principle of
minimum potential energy, the contributions being from the bend-
ing and compression in the face plates, shearing and transverse
compression in the core, and the work done by the external load.
The equilibrium equations are then developed using the calculus
of variations and a linear eigenvalue analysis yields the critical
load for overall buckling. As the equilibrium equations form a
system of nonlinear ordinary differential equations, subject to in-
tegral and boundary conditions, these are solved with a powerful
numerical continuation code for a series of different struts with
different levels monosymmetry with an objective to determine the
severity of the postbuckling response. A particularly severe case is
then investigated in detail such that results from both the perfect
and imperfect struts, along with a consideration of the worst case
imperfection, are presented. Conclusions are then drawn.

2 Interactive Buckling Model

Sandwich panels have stiff face plates placed on a lightweight
and softer core material. Figure 1 shows the layout of the sand-
wich strut to be studied. Face plates are assumed to be thin, which
in the present case means that through thickness shear is negli-
gible and that the depth of the core b is large in comparison,
isotropic and have a Young’s modulus E and Poisson’s ratio v.
The core can be constructed from balsa wood, two-dimensional
cellular materials such as, aluminium honeycombs, or three-
dimensional cellular materials such as polyurethane foams
[15-17]. The constitutive law for these materials are commonly
assumed to be either isotropic, orthotropic, or transversely isotro-
pic. In the present paper, for the least complexity, the core will be
assumed to be homogeneous and isotropic with Young’s modulus
E. and Poisson’s ratio v,, even though previous interactive local-
ized buckling studies have investigated the effect of core orthot-
ropy [8]. The principal difference from previous interactive buck-
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Fig. 1 The sandwich strut and its cross section. The face
plates can have different thicknesses (t, and t;) and that the
distance from the top face plate to the neutral axis is y. Note
that the load P is applied at the neutral axis of the strut.

ling formulations is that here the face plates have differing
thicknesses introducing the opportunity for asymmetry of re-
sponse particularly in the postbuckling range; the symmetry of the
critical buckling response is basically unchanged but the relative
location of the resulting secondary instability depends on the
thickness configuration of the face plates and the initial orienta-
tion of the critical buckling displacement. It is also worth noting
that owing to face plate anisotropy, monosymmetry can be intro-
duced to the sandwich panel even if face plates have equal thick-
nesses [18].

The expected behavior of such a strut in compression is for it to
follow the pure squash fundamental path, Fig. 2(a), and then to
buckle in the overall mode—Fig. 2(b)—causing differential com-
pression in the faces. This is likely to be followed closely by a
secondary bifurcation, in which the face under the greater com-
pression buckles in a second localized mode, Fig. 2(c). Any initial
geometric imperfection in the strut (shown as an initial value of
end-shortening &;) smears out the nonsmooth nature of the perfect
equilibrium path shown in Fig. 2(d).

2.1 Cross-section Monosymmetry. Figure 1 shows the
monosymmetric configuration of the sandwich strut with differing
face plate thicknesses ¢, and ¢, representing the “top” face and
“bottom” face, respectively. When undergoing overall buckling,
the bottom face plate is deemed always to have the greater com-
pression; the extra secondary buckling displacement is thus al-

Py

> £

& E° &8

Fig.2 Typical load P vs end-shortening £ equilibrium diagram
for sandwich struts: (a) fundamental path; (b) critical path of
overall buckling; (c) secondary path of localized buckling; (d)
typical imperfect structure equilibrium path
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Fig. 3 Sway and tilt components of overall mode

ways confined to that face plate. With these definitions, the dis-
tance of the cross-section neutral axis from the top face-core
interface y can be found in the conventional way for a section
with different material elements and is a key quantity to the for-
mulation of the model

ED*+Et[2b+1,(1 - )]
2[E.b + Et(1+ 7)]

where the ratio of the face plate thicknesses 7 is defined

y= (1)

T=—, 2
" 2)
which at times is referred to as the monosymmetry parameter. Of
course if the load were to be applied elsewhere from the neutral
axis then the structure would combine bending and compression, a
more complicated modeling problem which is beyond the scope
of the present study and is left for future work.

2.2 Face Plate Displacements. An earlier theoretical model
[7] had overall buckling represented by sway and tilt components
of a long wave mode (Fig. 3) reflecting the possibility of shearing
deformations in the core material where

W(x) = g,L sin %, (3)
6(x) = g, cos %, (4)

and interactive localized buckling defined by two functions w(x)
and u(x) representing, respectively, lateral and in-plane displace-
ments of a single face plate (Fig. 4). There is also a pure squash
strain component of both faces, A, which is introduced as a degree
of freedom.

3 Variational Formulation

The principle of minimum potential energy is the basis for the
following model’s formulation. The total potential energy function
V is defined as the sum of the internal strain energy stored in the
structure (U) minus the work done by the external loads (PE). The
accumulated energy has a functional form which is then analyzed
using the calculus of variations to determine the equilibrium equa-
tions.

— u(z)

Fig. 4 Displacement functions used to model localized

buckling
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Fig. 5 Stress-relieved state of the strut, after Thompson and
Hunt (see Ref. [20])

3.1 Strain Energy. In a general state of deflection there are
three components of strain energy U: pure bending in the faces
alone (Up), membrane action in stretching or compressing the
faces (U,,), and core energy (U,) that comprises transverse and
shearing strains.

3.1.1 Bending Energy. The bending energy components arise
from the overall bending of both faces, coupled with the local
bending of the lower face plate. Linear curvature expressions suf-
fice giving the following expression for the contribution from the
overall mode:

L
1 ot mX
Up=-E| |I,+1,)q;— sin® — |dx, 5
bo= 35 J() |:(r b)Q.xLz I (5)
where E is the Young’s modulus of the face plate with an associ-
ated Poisson’s ratio v. The quantities of /, and [, are the local
minor axis second moments of area of the top and bottom face
plates, respectively,

3
et

1t=m (6)
e —C ;
"7 2(1-07) @)

The model assumes that the bottom face plate has the greater
compression once overall buckling has occurred.

The sandwich panel is also modeled with a generalized imper-
fection that represents the initial deformation of the more com-
pressed face plate wy, which is formulated from an energy prin-
ciple. The form of the imperfection closely matches that of the
localized buckling mode for the strut on a softening foundation—
derived from a first order approximation of a multiple scale per-
turbation analysis [19]

wo(x) = A sech[ a(x — L/2)]cos[ Bm(x — L/2)/L], (8)
where A, is the amplitude of the imperfection, with a and S
defining the shape of it; « governs the degree of localization and
B governs the number of sinusoidal waves in the imperfection.
The imperfection is introduced by supposing an initially deformed
shape of the more compressed face plate wy(x) is stress relieved,

such that the elemental bending moment, M, and thus stored strain
energy of bending U, drop to zero as represented in Fig. 5 [20,9]:

1 1
dUy = sMde=5EIL,(x - x)dx, ©)
where y is the curvature of the strut due to w, x| is the curvature

of the strut due to wy and EI,, is the flexural rigidity of the imper-
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fect face plate. This also assumes that the strain energy in the
foundation is nonzero in the initial state. Assuming a small deflec-
tion curvature relationship, i.e., y=w", the strain energy of bend-
ing becomes

L
Uy, = %Elbf (W — wp)*dx, (10)
0

where primes represent differentiation with respect to the spatial
variable x. Therefore the total strain energy stored from bending
U, is the sum of U,, and U, thus

L
1 4
U,=~E [(1, F ) sin? T L(w" = w))? |dx. (1)
27 ), 2L

3.1.2 Membrane Energy. The membrane strain energy U,
accounts for the axial tension and compression in the face plates
when the structure bends after overall buckling. In the “tilt” con-
figuration shown in Fig. 3, the upper face plate simply contributes
the tensile equivalent of the compressive strain resulting from
overall buckling along with the component of pure squash A:

y ™ mx A
€,=q,——sin ——-A,
xt = G I L
while the lower face plate adds as extra contributions the corre-
sponding strains from Von Kdrmén large-deflection plate theory

(12)

1 . - . TX
exbzu’+5w’2—q,(b—y)z smT—A. (13)
The membrane strain energy is therefore (D=Et,c/2):

e [*
T2

62 Ele L 62
- dx + —2 - pdX

0 0

Un

L 4
ar X
=D 2 —2+ b_—2_ 222 7
fo{qt[fy ( y)]L2 sin” —

-
+2q,[b-y(1 + T)]Z sin %A +(1+ DA?

P . . mx
+u2+Zw4+uwz—[2A+2q,(b—y)?smT]

X\ u' +—w'| (dx.
2

3.1.3 Core Energy. In general, the core provides all the
transverse and shear resistance but only some of the longitudinal
resistance, most of which comes from the faces. Analysis is some-
what simplified if it is assumed that the faces provide all of the
latter; a usual assumption if the core is assumed to be soft [21].
Plane stress expressions are readily derivable which include a lon-
gitudinal strain component in the core, but little is lost conceptu-
ally if this is ignored [8]. To match the assumed displacements
w(x) and u(x) on the lower face and zero on the upper face of Fig.
4, displacements w.(x,y) and u.(x,y) must vary through the core.
If x and y are defined as in Fig. 3 and linear variations with y are
assumed the following expressions are obtained:

(14)

y-y
b

u(x,y) = ( )M(X), (15)

wl,y) = (D)wm. (16)

b

It is worth noting that the validity of this assumption has been
confirmed in earlier work in a comparative study on a simplified
strut on a nonlinear elastic foundation with a simulated overall
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buckling mode [7]. Under the assumption that €, is zero in the
core, the remaining core strains can be written

1%

eyz(;;c)z_(%>, (17)

ow ow,.  du,

Vo= o= O+~

Tox ox dy

mX y-=y u

=(q,— S—+|—|w' ——, 18
(.- q)meos ( ; )w Sy

where G, is the core shear modulus and can be related to the
core’s Young’s modulus E,. for an isotropic material

E

Ge 2(1+v) (19)
At this point it is worth re-emphasizing that although soft-core
materials are usually modeled constitutively as orthotropic or
transversely isotropic, the present study takes the simplest case of
isotropy such that the effect of differing face plate thicknesses is
highlighted more than the constitutive law of the core material;
comparisons of core orthotropy versus isotropy have been studied
at length in earlier work [8]. Therefore, the general expression for
the strain energy stored in the core is

U.= 2(1_1}2) J f ezdydx+— f J Yadydx, (20)

and substituting the appropriate expressions and integrating with
respect to y, we obtain (G=G.ch/2):

L
: ! L mX
T (SR I

| )

X , 2u 1 " M2 1
+(qs_qr)7TCOST w—-——I+|-w+—=—-—uw
(21)

b 3 b b
where k is introduced as the linear component of the transverse
core stiffness

.
T (1-)b

Note the introduction of nonlinearities in the core’s transverse
stiffness (k; and k,) that account for the general cellular core
material response under direct compression. The force versus dis-
placement profile of a cellular core material in direct compression
has a distinctive shape in that it is initially linear followed by a
plateau where the stiffness can actually drop below zero (k;>0)
as the microscopic cell walls in the material matrix buckle elasti-
cally. Subsequently the material restiffens (k,>0) as the cells
densify and the material becomes more resistant to further cellular
compression [17,22]. For the purposes of the present study, which
is to examine the location of the secondary instability and the
initial postbuckling response, the core is assumed to behave in a
linearly elastic fashion (k;=k,=0).

(22)

3.2 Work Done By Load. The final component of energy to
be identified is the work done by the load. The overall tilt mode
contributes nothing to the corresponding deflection £ of a load P
applied along the neutral axis of the cross section (Fig. 1), while
the contribution from the local buckling of a single face scales the
total of the end shortening of the face itself by the ratio of the
distance to the neutral axis from the top face plate y to the depth
of the core b. Together with the contributions from pure squash
and sway from overall buckling (Fig. 3) this gives the work done
as
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L 2772 =
PS:P] [qs—coszﬂ—<z)u’+A]dx. (23)
2 L b

0

3.3 Potential Energy Functional. The total potential energy
V of the complete structure is given by the summation of all the
strain energy terms: U,., U,,, and U,, minus the work done by the
load, P& [23]. This hybrid form of the potential energy involves
three degrees of freedom: ¢, ¢,, and A; and a functional involving
the two functions w(x) and u(x):

] + D{q,[

L
1 ot X
V= —E| (I,+1,)q;— sin* — + [,(w"
L{Z |:(z b)qst sin 17 p(w" =

,”2
T 2 [b-5(1 + 7)) sin %A +u?

L
7T)C:|( ,
— |\u
L

1 u’

3 b?
1 ,>+( ) wx( , 2u>] P[qf'nz , TX
- —uw —g)mcos —|w' —— | | =P ——cos” —
b qs— 4 I b
- <X>u’ + A] }dx
b
The strut width ¢ is a common factor which can be completely

eliminated from the model. It is therefore taken as unity for the
purposes of numerical solution.

+ (b y)z]Lz sin®
2 1 14 ro12 v 772
+(1+7A e - 2A+2q[(b-Y)f sin

+%w >}+ —kw? +G[(qX q,)* 7 cos? T+(
(24)

3.4 Linear Eigenvalue Analysis for Overall Buckling. Lin-
ear eigenvalue analysis yields the critical load for overall buckling
PC, arising on the pure squash fundamental path F at which g,
=¢g,=w=u=0. The potential energy is nondiagonal with respect to
q, and ¢q,, and so this critical load occurs when the matrix

Vi (VSFS Vf’) (25)
L v
is singular, where
>V |
V= 26)
dq;9q;
Therefore the critical load for overall buckling is obtained
mEl 2G*
PC=2G+—52(1+7) - ,
D )

P+ b-71+G

(27)

and this expression holds for both positive and negative values of
qs-

3.5 Equilibrium Equations. The integral in Eq. (24) repre-
senting the total potential energy of the physical system which
must be stationary at equilibrium; the calculus of variations is
applied to find this condition. The analysis that follows is a sum-
mary of this application of the calculus of variations. Consider the
Lagrangian (£) of the form

L
sz LW w' ,w,u' ,u,x)dx. (28)

0

For the system to satisfy equilibrium V has to be stationary. This
requires the first variation of V, which is given by the following
expression [24]:
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(29)
By satisfying the condition 6V=0, the Euler—Lagrange equations
give a system of nonlinear ordinary differential equations
EI " D 2A U 2 (b —) 772 ( M mX U m X /)
+ + —y)—|sin —w"+ — cos —
»W w o=y WL "

!

u' 2
_ 3W’2W” _ 2(””W, + u'w")] + G|:; _ gM}H + (qs

w X
~a) T sin% +kw=ELw]", (30)
" ! v = 773 X
D{u"+w'w —q,(b—y);cos;
G| 1 u X
+;[§w’—;+(qs—qt)wcosTi|=O. (31)

Other equilibrium equations are found by differentiating V with
respect to the degrees of freedom A, ¢, and g,, respectively,

rL (" 1
2qmb-y1+7)]+(1+7AL- —= <M'+—w’2>dx,
2D 0 2

(32)
7# - 26 (* 2
P=E(,+1,)— +2G 4s= 9 +— cosw—x w’——u dx,
L qs gsmL ), L b
(33)
D _ w4 _
E{qt[wz+ (b —y)z]p + E[b -y(1+ T)]A} —(g5—q)
fL[ZD(b_y) . ’7T.X( ’ 1 /2)
= — 5 sin—|u' +-w
0 GL L 2
1 X 2u
+—cos —|w'——| |dx. (34)
L L b

The system of equilibrium equations are also subject to three
boundary conditions at each end, these are determined from inte-
grating V by parts and yield the following [7]:

w(0) =w"(0) =0, (35)
w(L)=w"(L)=0, (36)
’ l 12 _ _ ﬂ
u'(0) + 2w 0)-A= Db (37)
’ l 12 _ _ E
u' (L) + 2w (L)-A= Db’ (38)

However, owing to the symmetry of the structure lengthwise it is
easier to solve the equations numerically between x=0 and mid-
span x=L/2. The following symmetry condition is therefore im-
posed at midspan in the numerical code:

w'(L/12) =w"(LI2) =u(L/2) =0, (39)

and because of this the conditions at x=L, i.e., conditions given in
(36) and (38) are automatically satisfied.
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Fig. 6 Relative proximity of secondary and critical bifurca-
tions for struts with different cores and monosymmetries

4 Numerical Experiments

The full system of equilibrium Egs. (30)—(34) are discretized
and solved subject to the conditions (35), (37), and (39) using the
numerical continuation package AUT097 [25]. This allows the
evaluation of the physical postbuckling modes and the equilibrium
response of a variety of different strut configurations that are se-
lected initially from earlier studies.

In the present study, the initial sign of the overall mode ampli-
tude ¢, is of paramount importance; the overall mode is triggered
at the same load for both positive and negative values of ¢, put-
ting the thicker and thinner face plates into extra compression in
turn. Therefore, with a face plate configuration with differing
thicknesses, a source of asymmetry in the postcritical buckling
response is introduced; the secondary bifurcation that triggers lo-
calized buckling occurs at different magnitudes of g; depending
on its initial sign. This leads to the conclusion that the degree of
imperfection sensitivity of the strut is asymmetric.

The cases are presented such that a symmetric struts with dif-
ferent core properties are selected from which their relative face
plate thicknesses are varied. The struts are compared against each
other by measuring the proximity of the secondary instability
leading to localized buckling relative to the initial instability that
causes overall (Euler-type) buckling. The study then focuses in on
a particular strut with a highly pronounced overall-local mode
interaction and presents its postbuckling characteristics together
with a study of its behavioral sensitivity to initial geometric im-
perfections.

4.1 Proximity of Secondary Bifurcation. The basic strut
used in the numerical study has the following material properties
taken from the literature [26,5,7]. The strut length and core depth
are kept constant in the present study: L=508 mm and b
=50.8 mm, respectively. The face plate material properties are
also kept constant: Young’s modulus £=68,947.57 N/mm? and
Poisson’s ratio v=0.3. The face plate thicknesses and the Young’s
modulus of the core are varied in the numerical study.

Figure 6 shows the effect of changing the monosymmetry pa-
rameter 7 for the strut on the relative gap between the critical
bifurcation for overall buckling and the secondary bifurcation for
localized buckling (£5/£C). Three different cases of core modulus
are shown and it can be seen that the degree of monosymmetry
can bring together the separate bifurcations, which in turn results
in a less stable structure in the postbuckling range. For the cases
of E,=300 and 198.57 N/mm?, there is clearly a worst case
monosymmetry with a minimum value £5/£€ being achieved for a
certain value of 7, as shown in Table 1. For the third case, E,
=50 N/mm?, the bifurcations become all but simultaneous for a
relatively large range of 7, this is most likely due to the local
mode becoming nearly critical for those values.
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Table 1 Worst case monosymmetry parameter 7 for different
core moduli E.. Simultaneous (compound) bifurcation points
would be represented by £5/£€=1.

E, (N/mm?) T &£516¢
300 1.15 1.610
198 1.27 1.278
50 1.40-2.00 1.005

1.0 mm

—_ —- Neutral axis
)
f0.8 mm
t; = 0.8 mm

)

ty = 0.8 mm
7=125 g >0

Fig. 7 The selected strut: definitions of the thicknesses ft;, 1,
monosymmetry parameter 7, and the sign of overall buckling g,

(c) w(z): gs >0

4.2 Full Postbuckling Results. Leading on from the previous
section, postbuckling results are now presented for a strut that has
quite differing relative secondary bifurcation properties depending
on the sign of the overall buckling. Figures 7-9 show a schematic
representation of the selected strut, buckling displacements, and
equilibrium diagrams for the geometrically perfect strut, respec-
tively. The selected strut has the following dimensions and prop-
erties: face thicknesses 1.0 and 0.8 mm; length L=508 mm; core
depth and properties 5=50.8 mm, E,=50 N/mm?, and v.=0.2. As
shown in Fig. 7, if the thicker face plate is in extra compression
after overall buckling is triggered then ¢, is negative and if the
thinner face plate is in extra compression after overall buckling
then ¢, is positive. For ¢,<0 the value of the monosymmetry
parameter 7=0.8 with the bifurcation proximity: £5/£¢=1.267,
and for g;>0 the value of the monosymmetry parameter 7=1.25
with the bifurcation proximity: £5/£€=1.016.

It can be seen in the graphs that the secondary (localized) post-
buckling modes of w, shown in Figs. 8(a) and 8(c), have differing
localized wavelengths for the face plates. Moreover, the important
result from this is shown in Fig. 9 where the proximity between
the critical and secondary bifurcations is significant only for ¢,
<0; for g;>0 the gap is much smaller. This implies that if the
strut has imperfections forcing g,> 0, the strut is much less likely
to reach the linear eigenvalue critical load than if ¢,<0 were
forced. This asymmetry in the potential sensitivity to imperfec-
tions is now quantified in the following section.

4.2.1 Imperfection Sensitivity. The geometric imperfection wy,
shown in Eq. (8), is introduced for the strut that was selected in
the previous section. For each face the imperfection sensitivity for
the periodic mode was determined using the following technique:
keeping the localization parameter « at zero and the wave number
parameter B at the linear eigenvalue solution, the value of the
imperfection magnitude &, where

z (mm)400 500 0.5

(b) u(z): gs <0

0.9

7
06 P/PC®

{190 500" 05

z (mm

(d) u(z): gs >0

Fig. 8 Postbuckling profiles of monosymmetric strut with face thicknesses 1.0 and
0.8 mm. Other dimensions and properties: L=508 mm, b=50.8 mm, E_.=50 N/mm?, and

v.=0.2.
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1.29 0.12
1 Wmax/b ]
tp, = 1.0 mm
0.8 0.08 1
2,
0.6 7
A t, = 0.8 mm
0.4+ t, = 1.0 mm 0.04 4 tp, = 0.8 mm
0.2 1
0 ' 0.01 0.02 008 004 O 0.04  0.08
g/L qs

(a) Load vs end-shortening

(b) Localized buckle amplitude vs overall
buckle amplitude

Fig. 9 Postbuckling equilibrium diagrams of monosymmetric strut with face thick-
nesses 1.0 and 0.8 mm. Other dimensions and properties: L=508 mm, b=50.8 mm, E_

=50 N/mm?, and »,=0.2.

L
L2
50=f Swy dx,

0

(40)

was varied; each variation of &, gave an explicit value of Ay. The
imperfection magnitude &, is in fact a measure of the axial end-
shortening introduced by the imperfection in the face plate prior to
the commencement of external loading. The load P was then var-
ied as a parameter in AUTO to find the corresponding limit load
P,/ P€ (see Fig. 2). The locus of these values of the limit loads
plotted against the size of the initial imperfection defines the so-
called imperfection sensitivity curve.

For the localized imperfection at a particular value of &y, B was
still kept at the linear eigenvalue solution but now both a and A,
were varied. Again, the load P was then varied as a parameter to
find the corresponding limit load P;/PC; the worst case was de-
fined as the combination of A and « that minimized the limit load
for a given value of &. Figures 10-12 show the imperfection
sensitivity curves and the changing profile of the imperfection
respectively for the cases where the sole imperfection is confined
to either the thicker or thinner face plate. As expected from pre-
vious work [9], the localized imperfection gives the more severely
unstable equilibrium response for nontrivial values of &,. More-
over, the monosymmetry of the sandwich panel means that the
relative imperfection sensitivity is higher when the thinner face is
imperfect rather than the thicker face; for example, when &,/t,

1.00 1

085

0.90 s
0.85

0.80

A/PE

0.75
o7
0E5

G0

000 0.05 oo ois

Eo/fty
(&) Tmpserfoct thicker fnce (g, < 0}

Fig. 10

020 o2

=0.025, the limit load for localized imperfections for ¢,<O is
P,/ P€=0.917, the corresponding limit load level for ¢,>0 being
P,/ P€=0.765, a drop in ultimate strength by 17% for an imper-
fection amplitude A, very much less than a third of the face plate
thickness.

5 Conclusions

The present paper has formulated an enhanced variational in-
teractive buckling model for sandwich struts that includes mono-
symmetry in the cross section, a component type that is relatively
common in practical engineering situations. The principal finding
is that this monosymmetry of construction introduces asymmetry
in the nonlinear response, i.e., different localized postbuckling
responses are found depending on the initial orientation of the
critical buckling. An important issue here is that the relative prox-
imity between the critical and secondary bifurcation can be sig-
nificantly changed just by reversing the orientation of the critical
buckling mode. The parametric study showed regimes where the
degree of monosymmetry forced the critical and secondary bifur-
cations to be effectively coincident. Moreover, the detailed nu-
merical study that focused in on a particular strut configuration
showed a marked difference between the sensitivities to initial
imperfections for the individual face plates; the thinner face being
much more severely unstable after triggering the interactive (lo-
calized) mode than the thicker face.

1.000
0.950
0.900 -

0850 e,

R/PE

0.800

0.750

0700
0.000 nluj{v] 0020
Epfty

{b) Imperfect thinner face (gs > 0}

D033

Imperfection sensitivity curves for periodic and localized geometric imperfec-

tions for the monosymmetric strut with thicknesses 1.0 and 0.8 mm; in this case the

thinner face is much more sensitive
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0
-0.5
500

200
z (mm)

100
(a) Periodic imperfection

Fig. 11

200
z (mm)

100 o 025

(b) Localized imperfection

Initial imperfection profiles for periodic and worst case localized geometric im-

perfections for the monosymmetric strut with #,=0.8 mm and t,=1.0 mm, i.e., the thicker

face buckles (gs<0)

(a) Periodic imperfection

Fig. 12

(b) Localized imperfection

Initial imperfection profiles for periodic and worst case localized geometric im-

perfections for the monosymmetric strut with #,=1.0 mm and #,=0.8 mm, i.e., the thinner

face buckles locally (gs>0)

These findings are significant for design practice, as although
the basic result of linear eigenvalue analysis is unchanged, the
nonlinear analysis reveals a significant sensitivity to very small
defects in the geometry such that the structure in certain configu-
rations can only attain a fraction at its critical buckling load.
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Elasticity Under Nonuniform
Loading

We investigate the classic (inverse) problem concerned with the design of so-called har-

monic shapes for an elastic material undergoing finite plane deformations. In particular,
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we show how to identify such shapes for a particular class of compressible hyperelastic
materials of harmonic type. The “harmonic condition,” in which the sum of the normal
stresses in the original stress field remains unchanged everywhere after the introduction
of the harmonic hole or inclusion, is imposed on the final stress field. Using complex

variable techniques, we identify particular harmonic shapes arising when the material is
subjected nonuniform (remote) loading and discuss conditions for the existence of such

shapes. [DOI: 10.1115/1.1979514]

1 Introduction

The design of optimum structural shapes leads inevitably to an
inverse problem in which we seek to determine the geometry of a
boundary from prescribed conditions that must be satisfied by the
final stress field. The approach used to solve such problems de-
pends significantly on the pre-selected design criteria. Among
these proposed criteria (see, for example, [1-3]), the “harmonic
condition” advanced by Richards and Bjorkman [4] for linear
elasticity is extremely attractive, in that it lends itself to the pos-
sibility of extension to more interesting and practical cases, for
example, to cases involving finite elastic deformations. In the case
of plane elastic deformations, the “harmonic condition” itself es-
sentially requires that the sum of normal stresses remains unper-
turbed everywhere in the stress field following the introduction of
a so-called “harmonic hole or inclusion” (harmonic shape).

In [5] the harmonic condition of Richards and Bjorkman [4]
was extended to the case of finite plane elastic deformations and
shapes of corresponding harmonic holes and inclusions were iden-
tified in a particular class of compressible hyperelastic materials
of harmonic type. In fact, under uniform biaxial loading, it was
shown that, as in the case of the linearly elastic material ([3,4]),
the harmonic shape is elliptical, but, in the case of finite deforma-
tions, the material nonlinearity significantly affects both the ge-
ometry of the elliptical shape and the condition for its existence.

The harmonic shapes identified in [5], however, correspond
only to the simple case of a uniform (remote) stress field imposed
in the material. For a linearly elastic material subjected to a non-
uniform (remote) stress field, Bjorkman and Richards [6] have
identified harmonic holes significantly different from those ob-
tained under the assumption of uniform loading, namely harmonic
holes in the shape of deloids and cardeloids.

In the present paper, we continue the analysis begun in [5] and
identify harmonic shapes (holes and inclusions) in a particular
class of compressible hyperelastic materials of harmonic type un-
der the more general assumption of nonuniform (remote) loading.

For completeness, in Sects. 1-3, we include a brief review of
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the model describing deformations of the harmonic material and
the corresponding equations used to determine harmonic shapes.
The main results are presented in Sec. 4.

2 Basic Equations For a Harmonic Material

The model of a compressible hyperelastic material of harmonic
type was first advanced by John [7] and subsequently studied by
various authors (see, for example, [8—11]). In these papers, it was
found that theoretical results based on this model were in good
agreement with experimental data. In this section, we present only
a brief review of the equations governing finite plane (strain) de-
formations of a harmonic material. Further details can be found in
[8-11].

Let the complex variable z=x;+ix, represent the initial coordi-
nates of a material particle in the undeformed configuration, and
w(z)=y,(z)+iy,(z) the corresponding spatial coordinates in the
deformed configuration. Define the deformation gradient tensor as

i

iz

dx;

For a particular class of harmonic materials, the strain energy

density defined with respect to the undeformed unit area can be
expressed by [9-11]:

(1)

W=2u[F(I)-J], F’(I):ﬁ[l+ VP - 16a8], )

where 1 and J are the scalar invariants of FFT given by
I=\F F;+2J, J=del[F], (3)

w is the shear modulus and 1/2<a<1, >0 are two material
constants. The importance of this class of materials has been
shown in [9,10], where experimental data show good agreement
with the theoretical model corresponding to (2).

According to the formulation given by Ru [11], the deformation
w(z) can be written in terms of two analytic functions ¢ and ¢ as

— B
iw(z) = ag(z) + ilz) + ) 4)
¢'(2)
and the complex Piola stress function x(z) is given by
x(2) =2pi| (= 1)@(2) +itz) + )

¢'(2)
The stress components can be written in terms of the Piola stress
function as
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Fig. 1 Schematic of the strategy used to identify a harmonic
shape

(T“+l.0'21=—l.)(’2 and —i(712+ 0-22=X,1' (6)

Using Egs. (5) and (6), the sum of the two normal stresses is
given by

O+ O = Z—)Z(+ (Z—:) =2,u,i{(a— De'@-¢'( ]

+B[_L___i_]} .
EEEIONA

The displacements and stresses can be completely determined
from the boundary conditions. That is, from the force boundary
condition

ZMil(a— De(z) +i(z) +

Z
} =H(z), (®)

¢'(z)

and the deformation boundary condition

— Bz
i) + =iG(z). ©)
®'(2)

ap(z) +

Here, H and G are prescribed functions.

Our objective in the present paper is to solve the inverse prob-
lem concerned with the determination of the shape of a harmonic
inclusion or hole (in the undeformed configuration) in this particu-
lar class of nonlinearly elastic material when the remote loading is
nonuniform.

We proceed by first using the mapping function z=w(&) to map
(conformally) the infinite region outside an “arbitrary” harmonic
shape in the z plane to the infinite region outside the unit circle in
the & plane (see Fig. 1). The corresponding harmonic shape can
then be identified if the mapping function z=w(£) can be deter-
mined. We begin by transforming the necessary relations in the z
plane to the ¢ plane. For convenience, we write,

¢(2) = p(0(8) = e(§), z) = e w(€)) = Y(§).

The sum of the two normal stresses is then expressed in the &
plane as

(10)
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¢ “"(S]w{@—&”
W@ W] e vel]
(1

Similarly, the boundary conditions are given in the £ plane as

(8 +0'22=2Mi{( - 1)[

2#1[(a—1><p(§>+ WD+ B (5)(8(9-11@)], (12)
and
apl®) + i + B2 &) (g)(‘;’)@- GO, (13)

3 General Equations For the Identification of Har-
monic Shapes

The schematic used to identify the harmonic shape is depicted
in Fig. 1. In a two-dimensional infinite sheet without any hole or
inclusion, the original displacement and stress fields are deter-
mined by two analytic functions, ¢, and ¢,. When a hole or
inclusion is introduced into the sheet, the original stress field is
locally distorted near the hole or inclusion. Suppose the final
stress field is expressed by the two analytic functions ¢(£) and
(&) through relations of the form

@(8) = 0, (&) + ,(&). &) =, () + ¥,(&). (14)

Here, the subscript “p” refers to the perturbed terms resulting
from the introduction of the hole or inclusion and the subscript
“0” indicates the original field.

Asymptotically, it is clear that we require ¢(£) and ¥(£) to
approach ¢,(£) and (&), respectively, as | — . To determine
the geometry of the harmonic shape, we require that the final
stress field satisfies a type of harmonic condition similar to that
proposed by Bjorkman and Richards [3], in which the sum of
normal stresses remains unperturbed everywhere in the field.

Consequently, in the £ plane, substituting Eq. (14) into Eq. (11),
we obtain that

®,(6)=0. (15)

In addition, it is clear that, at infinity, the perturbed function ¢,
must satisfy

g — oo

¥,(€) =0, (16)

Since ¢,(é) is analytic outside the unit circle y: |&=1, it possesses
the following property

(o)

1.
= 4>

do=0 forany (17)

Multiplying each term in Eq. (12) or (13) by do/(o—¢) and inte-
grating over 7y, we obtain, in each case, the following equations
for the mapping function w and hence the harmonic shape:

®o(0) J i,(0) J w(0)w'(0)
(a=1)| ——do+ do+B| —do
yo-§ y 0=§ y(Po/(C")(U'_f)
H(o)
=— | —do, (18)
uid , o—-§&
or
?,(0) f llﬁo(U) f w(o)o' (o)
a SO+ +pB ——do
Lo—é , 0, (@)(T- 9
= f g("; (19)
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For a given loading at infinity and prescribed conditions along
the interior boundary, the mapping function z=w(£) can be ob-
tained from Eq. (18) or Eq. (19). Substitution of the mapping
function into the interior boundary condition described by Eg.
(12) or Eq. (13) then gives the boundary value of the analytic
function #,(§) on the unit circle y. Next, taking into account the
asymptotic condition, Eq. (16), we can determine the analytic
function #,(£) in the entire domain. Finally, the displacement and
stress fields are obtained using Eqgs. (4)—(6).

4 Examples: Harmonic Shapes in the Case of Nonuni-
form Loading

Under a uniform biaxial loading, the harmonic shape is an el-
lipse that depends on the ratio of the biaxial stresses and the mean
normal stress [5]. Consider now the case when the loading is
nonuniform. It is assumed that the remote stress field is given by
two analytic functions ¢, and i, as

0,(2)=Az, ,(z) =Bz+CZ>. (20)
The corresponding remote stresses are given by
01,=N,-Ky, 0p»=N,+Ky, o5 =0,=—kx, (21)

where Ny, N,, and K are real constants related by the equations

N,+N N,—N _ K
2L =oui (a—l)AJjg . 2L -24i(iB), C=—i.

2 A 2 4
(22)

As in [6], the fact that the considered stress field is unbounded at
infinity causes no particular difficulty, since in any (finite) struc-
ture, one need only consider a sufficiently large (finite) region in
which all stresses are then bounded.

For convenience, in what follows, we denote by I" and I'’ the
expressions

N, +N, N,—-N,
T2 2

For a rigid inclusion, the displacements on the interface be-
tween the surrounding material and the inclusion must be zero,
thus G(o)=w(o). Thus Eq. (19) simplifies to

() T2
- nFJ wd(r+r/f Mdc’+5i Lol do=0,
) & yo’—g 2 y o-¢

r_

= (23)

s

o -

(24)

where

_ N1 +4( - @)pQul)? | 2
= (1-a) S

and the sign of 7 has been determined by the condition that the
deformation must have the same sign as the stress under equal
biaxial loading.

In this case, it is found that mapping function w(§) can be
expanded in a Laurent series outside the unit circle as

n (25)

a, a
w(f):R(§+—l+—§+---.>, (26)
& &
where R is a real scaling constant and a;, i=1,..., are constants.
Substituting Eq. (26) into Eq. (24), evaluating the integral and

comparing like powers of &, we obtain

’
a=——7

az=)\i, a3=a4="'=0 (27)

with
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Fig. 2 Harmonic shape for different loading scenarios

KR
A=——. (28)
29l
Thus the mapping function is finally given by
ay }\l
z=w(§)=R(§+—+—). (29)
§ &
From Sec. 3, the stresses are then obtained as
_ 1 AN
oy +ioy =T - (1" +KiR§—F7;;><l - % +2é> ,
13 & ¢
(30)
_ T VAN
—i(T]2+0'22=F+<F,+KiR§—;77>(l—a__;+2?‘j> .
13 & &
(31

When K=0, the results reduce to those obtained under uniform
biaxial loading, namely that the harmonic inclusion is elliptical
[5]. However, for a nonuniform loading described by the second-
order term of ¢, the shape of the harmonic inclusion is somewhat
different: the influence of the nonuniformity [characterized by \
in Eq. (28)] is shown clearly in Fig. 2.

When a higher-order term in ¢, is considered, for example,
,(z)=Bz+CZ", one can obtain the corresponding harmonic inclu-
sion using the same procedure described above with the mapping
function described by parameters a; to a,,.

In the case of free holes, we can obtain the corresponding har-
monic shape by setting 7=-1 in Egs. (27) and (28).

To ensure the existence of these harmonic shapes, the derivative
of the mapping function w’(£) must be nonzero in the region |€
= 1. By solving the equation '(£)=0, and then requiring that all
the roots are located inside the unit circle, we can obtain that a;
and \ must lie within the region enclosed by the curve shown in
Fig. 3. As in the case of uniform biaxial loading, the choice of a;
still falls within the range [-1,1]. The range of permissible \
decreases from 0.5 to O as the absolute value of a; increases from
0 to 1. In the case of uniform remote loading (A=0), the harmonic
shape exists only if |a;|<1, which depends only on the remote
loading and material properties. However, in the case of nonuni-
form remote loading (of any order), the harmonic shape is also
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Fig. 3 Condition for the existence of the harmonic shape

dependent on the absolute size of the shape, (inclusion or hole)
characterized by the parameter R, as indicated in Eq. (28). This
particular result, which has been shown to be true also in linear
elasticity [6], has significant implications for engineering design.

5 Conclusions

We consider the design of harmonic shapes (holes or inclu-
sions) in a particular class of compressible hyperelastic materials
of harmonic type undergoing finite plane deformations while sub-
jected to nonuniform remote stress. Harmonic shapes are charac-
terized by a (“harmonic condition”) imposed on the final stress

694 / Vol. 72, SEPTEMBER 2005

field. The (“harmonic condition™) used here is a generalization of
the original condition used in the corresponding problems of lin-
ear elasticity: specifically, that the sum of the normal stresses in
the original stress field remains unchanged everywhere after the
introduction of the harmonic hole or inclusion.

It has been shown that the influence of the nonuniformity of the
remote loading has a significant effect on the design of the har-
monic shape and on the condition for its existence.
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The Pseudo-Rigid Rolling Coin

A pseudo-rigid coin is a thin disk that can deform only to the extent of undergoing an
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arbitrary affine deformation in its own plane. The coupling of the classical rolling prob-
lem with this deformability, albeit limited, may shed light on such phenomena as the

production of noise by a twirling dish. From the point of view of analytical dynamics, one
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1 Introduction

The theory of pseudo-rigid bodies [1-3] may be seen as emerg-
ing from the following simple idea: if a deformable body is con-
strained to undergo only homogeneous affine deformations
(namely, with a space-wise constant deformation gradient), its de-
grees of freedom are so severely curtailed that its motion is gov-
erned no longer by partial differential equations but by a system of
ordinary differential equations. In other words, the problem falls
from the realm of Continuum Mechanics into the domain of Clas-
sical Analytical Mechanics. In fact, the limitation to affine defor-
mations, apart from having the merit of simplicity, is not the es-
sential point: any restriction of the motion to a family governed by
a finite number of parameters will do. The methods of Rayleigh-
Ritz and Galerkin and their heir, the method of finite elements, are
typical examples. Nevertheless, the particular case of an affine
deformation (which from the point of view of the finite-element
method would be equivalent to a single constant-strain element)
lends itself to a rather explicit dynamical analysis by means of
Lagrangian or Hamiltonian mechanics. In the case of a thin struc-
ture, such as the coin that occupies us, another interesting possi-
bility would be to allow for a bending deformation with a pre-
scribed shape. In fact, for the study of the noise produced by
rolling wheels, this should be considered as the most important
degree of freedom. In this paper, however, we shall focus only on
the in-plane deformability of the disk, while our studies on the
bending deformation are underway. Possible applications include
the dynamics of tires and other flexible rolling devices. Rings, in
particular, are likely to be more flexible in their main plane than in
transverse bending. Another interesting potential application is the
analysis of the noise produced by the rolling (and sliding) of a
disk on a horizontal table. Interest in this classical problem has
been recently revived by a number of publications [4-7] and by
the commercialization of a toy known as Euler’s disk. For speci-
ficity, we develop (and, in some cases, solve) the equations that
correspond to a solid incompressible neo-Hookean disk.

There has been considerable attention devoted to pseudo-rigid
bodies, also called Cosserat points [8], in the recent past [9-13],
ranging from the theoretical to the applied realms (impact prob-
lems, vehicle dynamics, granular media, etc.). Our own interest in
this topic does not emanate from any position that would seem to
suggest that pseudo-rigid bodies can shed light on fundamental
problems of Continuum Mechanics. Quite to the contrary, we be-
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of the interesting features of this problem is that the rolling constraint turns out to be
nonholonomic even in the case of motion on a straight line in a vertical plane. After the
analytical formulation of the general problem, explicit solutions are obtained for special
shape-preserving motions. For more general motions, numerical studies are carried out
for various initial conditions. [DOI: 10.1115/1.1979515]

lieve that pseudo-rigid bodies, belonging as they do to the realm
of classical mechanics, offer a wealth of interesting problems not
treated in the traditional literature which are worth exploring in
their own right. To the best of our knowledge, the general problem
of rolling, with its attendant nonholonomic constraints, has not
been treated to date. The particular case of planar (vertical) rolling
on a horizontal straight line has been tackled by Cohen and Sun
[14]. Although this problem can be regarded as a particular case of
the more general problem of rolling arbitrarily on a horizontal
plane, we will deal with it separately in Sec. 2. (A direct numeri-
cal comparison with the results of [14] has not been carried out,
since the constitutive equations used for the elastic material are
different.) One reason for doing so, apart from the gain in sim-
plicity, is the somewhat unexpected fact that, even in this highly
simplified context, the rolling constraint turns out to be nonholo-
nomic, in sharp contradistinction with the rigid-body counterpart.
Only after we gather some specific knowledge from this case will
we move on to the formulation of the general problem (Sec. 3). A
detailed study is carried out of special shape-preserving motions,
for which an explicit analytical solution can be obtained. A per-
haps surprising by-product of the analysis is the discovery that the
most general family of force-free motions of a free pseudo-rigid
body does not include any nontrivial shape-preserving motion.
Finally, numerical examples for more general motions with vari-
ous initial conditions are presented and discussed in Sec. 4.

2 Straight Rolling in a Vertical Plane

2.1 Kinematic Analysis. Following the continuum mechanics
paradigm, we adopt a reference configuration in a Euclidean space
with Cartesian coordinates X,Y,Z. We purposely avoid the use of
indexed quantities to deal with as explicit equations as possible,
both analytically and numerically. In this reference space lies a
perfectly circular disk (the coin) with radius R, thickness & (with
h/R<1), and center at the origin of coordinates. The normal to
the main plane of the coin is aligned with the Z-axis. Its mass
density p is uniform. The material properties are assumed to be
uniform and the coin to be in a homogenenous reference configu-
ration. Moreover, we assume the material to be fully isotropic. We
adopt a system of Cartesian coordinates x,y,z in physical space,
placing the y-axis vertically. For the purpose of visualization, it is
convenient to think of both coordinate systems as being immersed
in a single space and being coincident (or at least parallel). We are
interested in studying configurations in physical space whereby
the coin retains its planarity while undergoing only affine (homo-
geneous) deformations while the main plane remains vertical as
the coin rolls on the x-axis. An affine deformation consists of a
deformation with constant gradient, namely,

r(t) =ro(1) + F(R, (1)

where R and r are the position vectors in the reference and spatial
configurations, respectively, r is the spatial position of the center
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of the coin, F is the deformation gradient, and ¢ is time. According
to the assumptions listed above, this formula has the following
component form:

X Xo X x 0 [|X
Y=o [y y2 O Y, (2)
z 0 0 0 z3|Z

where (xg,y,0) is the position of the center. The entries of the
square matrix are all nondimensional. In particular, z3 represents
the relative change in thickness. All the indexed x’s, y’s and z’s
are functions of time. Without loss of generality, we may assume
the material to be incompressible, so that det F=1. Denoting:

X X2
A =det =X1Y2—X2V15 3)
Yi Y2
the incompressibility condition can be expressed as
=1/A. 4)

Differential equations of motion will be formulated in terms of the
x’s and the y’s, and the time evolution of z3 will follow from Eq.
(4). In other words, due to the assumed extreme thinness of the
coin, there is no dynamical contribution from the z-direction.

To complete the kinematic description of the motion, we need
to introduce the constraint of no-sliding contact. In fact, this con-
straint results in two equations: the first equation represents the
fact that at all times the lowest point of the deformed coin has
zero height above the ground, while the second equation ensures
that the speed of the point of contact vanishes. To find the lowest
point of the coin, we introduce an angular parameter y in the
reference configuration (see Fig. 1) and write the parametric equa-
tion of the perimeter as

X=Rsin vy,
®)
Y=—-Rcos y.
Introducing these formulas in Eq. (3), we obtain the correspond-
ing equations for the deformed perimeter as

X=Xo+ xR sin y—x,R cos vy,
_ (6)
Y=Yo+tyiRsin y=yRcosy,
which, as expected, are the parametric equations of an ellipse. The
lowest point of this ellipse occurs at a value 7, satisfying

dy .

——=y,;Rcos y,+ y,R sin y.=0. (7)

dy
Using this result in Eq. (6) via standard trigonometric identities,
and setting y=0 (for the point of contact), we obtain the following
constraint:

Yo=ROT+3), ®)
where we have incorporated the ambiguity of the trigonometric
functions (or the square root) by squaring. Obviously, we should
consider always y,>>0, the negative value corresponding to hav-
ing the uppermost point (rather than the lowest) in contact with

Yo
R \
X

Zg

Fig. 1 Geometry and deformation
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the ground.

To obtain the second constraint equation, we differentiate Eq.
(6) with respect to time and obtain the velocity of the point of
contact as

X=X+ xR sin y, — xX,R cos .,
©)
V= Yo+ ¥R sin ¥, = Y,R cos ,.
It is clear that, by virtue of Eq. (8), the y-component of the ve-
locity already vanishes identically. We are left with the imposition
of the vanishing of the x-component, yielding the following con-
straint:
Xoyo = R7Giyyy +42y2), (10)
where we have taken Eq. (8) into account. Unlike its counterpart
for the case of the rigid coin, this constraint is nonintegrable.

2.2 Equations of Motion. The total kinetic energy of the coin

is given by
K= f f f 1p(% + yHdXdydz,

where, invoking the assumption that #/R<<1, we have neglected
the contribution of the thickness-wise velocity components. Sub-
stituting the derivatives of Eq. (2), Eq. (11) yields

(11)

phwR* ,  ,  phmR* , ., .,
KzT(xg+y3)+T(x%+x§+y%+y%). (12)
The potential energy of gravitation is
U, = phmRgy,, (13)

where g is the acceleration of gravity. The energy associated with
the deformation depends, of course, on the material. For the sake
of specificity, we will assume a hyperelastic neo-Hookean mate-
rial, with the following stored-energy function per unit volume:
G T

w= E(trace(F F)-3), (14)
where G is the shear modulus. This equation presupposes the
material to be incompressible, a constraint that we have already
imposed by the a posteriori calculation of z3, according to Eq. (4).
Taking due consideration of Egs. (3) and (4), we can write Eq.
(14) more explicitly as

wzg(x%+x§+)’%+)’%+é_3)' (15)
The total elastic stored energy
U,= f J f wdXdYdZ, (16)
is evaluated as
Ue=hw§2G<X?+X§+y?+y§+é-3)- (17

Forming the Lagrangian L=K-(U,+U,) and introducing the
Lagrange multipliers N and u, respectively, for the constraints
given in Egs. (8) and (10), for whose treatment we adopt the
standard Chetaev rule, we obtain the following equations of mo-
tion for the unknown functions xy, yg, X1, ¥1, X2, ¥2, A, and u

Xo= Yo, (18)
Yo=—8+\yo, (19)

y
xl__k<xl_A_i>_4#’yl’ (20)
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X
y".=—k(y1+A—é)—4xy1, (21)

. Yy
Ky=-— k<x2 + A_13> —4uy,, (22)
. X1
Yo=—k )’2-E — 4Ny, (23)
where
4G
k= B (24)
p

and where A is given by Eq. (3). These equations of motion must,
of course, be supplemented with the constraint equations (8) and
(10) themselves, for a total of 8 equations for the 8 unknown
functions. For numerical purposes, it is convenient to further dif-
ferentiate the constraints and eliminate algebraically the Lagrange
multipliers. Such details are not discussed here, since they are
standard computational techniques.

2.3 Driven Motions and the Conveyor-Belt Problem. We
will call driven motions those that are induced by a prescribed
motion of the center of the disk, just as an axle would. We start by
assuming that only the translations x, and y are prescribed, while
the rotation is left to its own device. Equations (18) and (19) are
then discarded, while the prescribed motion is plugged in, wher-
ever else it appears. Of all possible driven motions there is one
kind that deserves special attention, namely, the class of motions
that are shape preserving. In particular, we are interested in a
stationary shape-preserving motion, in which not only the shape is
preserved, but it also appears to glide as if in translation, as op-
posed to one in which the shape is preserved but it appears to
rotate. A practical instance of a stationary motion is that of a
conveyor belt being driven by friction by a rubber tire. We start by
specifying the driving motion as

xo(1) = At, (25)

and

yo(t) =B, (26)

where A and B are constants. The exact mathematical definition of
a stationary motion might seem quite perplexing, except for the
fact that the polar decomposition theorem of algebra comes to our
help. In particular, the left polar decomposition of the deformation
gradient:

F=VQ, (27)

where V is symmetric and positive definite and where Q is
(proper) orthogonal, leads immediately to the conclusion that: a
motion is stationary if, and only if, the matrix V is constant in
time. Let, therefore:

a b O
V=|b ¢ 0|,
OOZ3

where a, b, ¢ are constants with a+c¢ >0 and ac—b*>0. For our
particular choice of driving motion it is clear also that the matrix
Q must represent a rotation at a constant angular speed wg,
namely,

(28)

cos wygt sinwgt 0

Q= (29)

—sinwyt coswyt 0

0 0 1
Substituting the above expressions into the equations of motion
(20)—(23) and the constraints (8) and (10), it turns out that the

time dependence cancels out and we obtain a system of 6 nonlin-
ear algebraic equations involving A, B, wy, a, b, ¢, \, and pu.

Journal of Applied Mechanics

Fortunately, it is possible to solve this system explicitly and obtain

2 A + <A2 >2+(R>2 (30)
a'=—— — -,
2kR? 2kR? B
b=0, (31)
B
=—, 32
c=7 (32)
A
= 33
Wy Ra (33)
) k
4)\=(wd—k)+@, (34)
m=0. (35)

The fact that b=0 means that the eigenvectors of V are aligned
with the coordinate axes, so that a stationary solution of this kind
is possible only with a “horizontal” ellipse. The fact that =0 was
to be expected, since u represents the horizontal component of the
ground reaction, which should vanish for a motion at constant
speed. The value c=B/R is also predictable, since ¢ represents the
minor axis of the ellipse, which is obviously dictated directly by
the imposed value of y,. To have a positive ground reaction (i.e.,
upward), we impose N >0 and get the following restriction be-
tween driving height (B) and speed (A):

oul-(3])

Naturally, this restriction is automatically satisfied if B<<R, but
higher values of B are permitted provided the driving speed is
sufficiently fast so that the “centrifugal” expansion of the disk
makes it enter in contact with the ground. [According to Eq. (19),
if it so happens that the calculated X is exactly equal to g/B, then
the steady motion is not driven, but happens on its own, the shape
of the ellipse being now prescribed by the weight and the speed A
alone. An explicit formula to find the value of the speed A neces-
sary to achieve a prescribed height B with no driving force can be
found without great difficulty, but is not shown here. On the other
hand, one can always interpret a driven motion as spontaneous in
a gravitational environment whose intensity is adjusted to_the
value AB. For example, the values R=1, k=1, A=1, B=16/6,
yield the solution a=\3, b=0, c=V6/6, A\=17/6, u=0, w,
=v3/3. If we specify, with the right initial conditions, an accel-
eration of gravity of 17V6/36, this stationary-shape motion will
endure without the need of being driven.] The particular case in
which \ is exactly zero corresponds to the free rotation of the
disk, without constraints. For this case we obtain a=c (circular
shape). If we assume in addition that the ground is absent and
suppose that what can be controlled is actually the angular speed
wy, it follows from Eq. (34) that this speed is related to the radius
of the deformed disk (R’ =cR) by the formula

Surprisingly, we conclude that the driving angular speed cannot
exceed the limiting value wmaxzv"k, but that this value can be
approximated from below very closely with relatively small de-
formed radii. For example, for c=1.2 we obtain w;~0.816 w,y,
and for c¢=2 the value is w;~0.993 w,,,,. Thereafter, the energy
needed to obtain a marginal increase in angular speed becomes
very large. If the initial conditions specify a radius slightly differ-
ent from the one corresponding to stationary shape, oscillations
take place. When the driving angular speed is equal to the maxi-

(36)

(37)
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mum value, the amplitude begins to increase with time, a growth
that becomes asymptotically linear.

2.4 Small Oscillations. The phenomena just described are
analogous to what would be observed when placing a spring-mass
system radially on a rotating table. If the spring is linear, reso-
nance will occur as the rotational speed of the table reaches the
natural frequency of the system. The “centrifugal force” will then
drive the mass to infinity at a constant acceleration. For angular
speeds lower than the resonant one, there exists a position of
dynamic equilibrium of the mass, and any small disturbance will
cause oscillations to develop with a frequency that becomes
smaller the closer the angular velocity is to the resonant value.
Although, as we have discussed, the rotation of the free neo-
Hookean disk is qualitatively similar, it is important to verify that
the natural frequencies of the disk at rest are higher than the value
wmaxz\e“’k calculated above. What this means is that there is no
danger that some resonance will be triggered by the driving rota-
tion before it reaches that value.

To verify that this is indeed the case, we set A=u=0 and lin-
earize the equations of motion (20)—(23) around the static equilib-
rium and obtain

iiy == k(i = vy + 3(u; +v,)), (38)
U1 =—k(v, +uy), (39)
liy == k(uy +v), (40)
Uy == k(vy— 1y +3(u; +v5)). (41)

where u,, vy, u,, and v, are small increments of x|, y, x,, and y,
around the equilibrium values 1,0,0, and 1, respectively. In matrix
form we obtain

L.t'l 4 0 0 2 u 0
U 011 0()o 0
L[tk = (42)
iy 01 10(]|u 0
U, 200 4 ||v, 0

The corresy_onding natural frequencies are: w;=0, w,=w;=12k,
and w,=\6k. The zero frequency corresponds to the eigenvector

231 0
v -1
: : (43)
Uy 1
1% 0

which represents a rigid rotation (irrelevant when the rotation is
being driven). The largest eigenvalue (w4) corresponds to the ei-
genvector

U
U

. (44)
U

—_—_ O O =

Uo

representing a uniform expansion of the disk. Finally, the repeated
eigenvalue corresponds to the following eigenspace:

U, -1 0
(23] 0 1
= C] + C2 i (45)
Uy 0 1
%) 1 0

where C| and C, are arbitrary real numbers. This eigenspace rep-
resents all area-preserving ellipses in the plane (in the linear ap-
proximation, of course). Without pursuing this analytical study
further, these results seem to indicate that no matter how the coin
is initially propelled, there is no danger that a critical initial speed
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might exist such that resonance will be triggered.

3 General Rolling on a Horizontal Plane

3.1 Kinematics. Adopting the same notation and general
scheme as before, we start from the most general affine deforma-
tion of our coin, namely,

X X0 X X, x3 || X
Y(=1Yo(*+|[y y2 ys\Y (. (46)
z ) 21 2 3 || Z

where the only difference with the previous case is that there are
no automatically vanishing entries. Nevertheless, even in the more
general case, we do not allow the coin to deform arbitrarily. In-
deed, neglecting the effects of transverse shear, we will require
that the material lines initially perpendicular to the main plane of
the coin remain so at all times. In other words, the last column of
F must be orthogonal to the first two. The entries of the third
column must, therefore, be proportional to the third row of the
inverse of F, namely

x3= (22— vz, y3=— (12— %2/,
(47)
23=(xy, =0y /T
Since we will again require that the total volume be preserved, the
proportionality factor I' must be adjusted to the value:

U= (12— 3220 + (01zg = 002)° + (1yya = ypx)®. (48)
The no-sliding condition will now involve not two but three equa-
tions of constraint, since the velocity tangential to the plane of
rolling has now two possible components, both of which need to
vanish. By exactly the same procedure as before, we obtain the
following three equations:

Yo=RX(1 +y3), (49)
XoYo = R*(x1y + %5y5), (50)
Zoyo=R*(Z1y1 + Z2y0), (51)

the first two of which are identical with the ones for the two-
dimensional case. The last two equations constitute nonholonomic
constraints. [We note that taking the derivative of the holonomic
constraint (49) one gets the formula yoyo=R*(¥,y; +Y,y,), which
has an obvious similarity to the other two. This aesthetic nota-
tional point, although noticed, has not been exploited. It may
serve to explore symmetries of solutions. ]

3.2 Dynamic Equations. The kinetic energy can be obtained,
as before, by a straightforward integration, yielding

phaR*
8

harR>
k=Pt 5 (2+y2+2) +

S R S B S
(BT + X5+ Y]+ Y5 +21+25).

(52)

The gravitational potential energy expression (13) remains un-
changed. Finally, for the neo-Hookean material, the stored elastic
energy is given by

haR>G
Ue=———(+ )+ 0+ 0433+ 5+ 5 +)3+53-3),
(53)
which, in view of Egs. (47) and (48), can be written as

h7R’G 1
S e tededetedeioa). 6o

an expression that reduces to Eq. (17) in the purely two-
dimensional case.
As before, we form the Lagrangian L=K-(U,+U,) and intro-
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duce the Lagrange multipliers N\, u, and v, respectively, for the
constraints (49)—(51), we obtain the following equations of mo-
tion for the unknown functions x¢, yo, o, X1> ¥1» 21> X2, Y25 225 Ny s
and v:

Xo= My, (55)
Yo=—8+\yo, (56)
o= VYo, (57)
F=e k(xl B Ya(x1ys —xzyl)r";zz(xllz —xzzl)) —4uy,, (58)
§) =—k(y| _ —xz(X1Y2—X2Y111; Zz(ylzz—y211)> — 4y,
(59)
= k<Z1 _ = X(x125 —xzzl;; ¥2(V122 —yzzl)) —dvy,,
(60)
£=— k(xz— —vi(xyy _xzylr)q_ (%12 —Xzzl)) — 4y,
(61)
§y=— k(yz _ x(x1yn —xz)’I)F—zzl(ylZz —)’2Z|)> — 4Ny, (62)
PR k<22 _ x1(x12 —X221)1:'2Y1(Y122 - )’221)) —4vy,, (63)

where T is given by Eq. (48). When supplemented with the con-
straints  (49)—(51), these equations constitute an algebraic-
differential system to solve for the 12 unknown functions.

3.3 Steady Motions: Pivoting. The complicated figure-
skatinglike patterns traced by the disk as it rotates and deforms
should be left perhaps for numerical investigation, and we will
show some examples in the next sections. On the other hand, the
possibility of inducing cylindrical and conical motions, whether
by driving the movement or by specifying the right initial condi-
tions and letting the system move of its own accord, is worthy of
analytical study. The easiest example is that of vertical pivoting
about a fixed point of contact. As before, we will concentrate on
shape-preserving motions. Noting that in this case (due to the
assumed fixity of the point of contact) the motion is actually a
material rotation, we use the right polar decomposition to express
the deformation gradient as

. a 0 O
coswt 0 sin wt
0c¢c O
F=RU= 0 1 0 { (64)
—sinwt 0 coswt ||0 O —

ac

The diagonal nature of U follows in this case by an argument of
symmetry. Explicitly, we have

xj=acoswt, x,=0, y; =0, y,=c,
(65)

zi=—asinwt, z,=0.

Assuming the pivot to be at the origin, we complete the descrip-
tion of the motion by setting xy=z(,=0 and y,=constant. A direct
substitution into Eq. (48) yields

I=d’c. (66)

Finally, a substitution of all these values into the equations of
motion and the constraints, yields the following two relations:
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(67)

| 4g

(azc4 l) " kRc¢' (68)
It follows from Eq. (67) that there is an upper limit (\k) for the
angular velocity. This fact, consistent with Eq. (37) obtained for
the in-plane spinning, is due to the assumed neo-Hookean behav-
ior. For any given w, the explicit expressions for a and ¢ involve
the solution of a cubic equation, which will not be displayed. On
the other hand, one can easily show that c<1 and a>1, as ex-
pected. For w=0 we recover the same equations for the static
deformation that would emerge from the system (30)—(35) with
A=0, etc. Naturally, in the three-dimensional context, the static
solution is unstable. Taking into consideration the static values c;
and a,, one can refine the above bounds to obtain c<c, and a
=ag.

3.4 Steady Motions: General Case. So far, we have consid-
ered only very particular cases of steady (i.e., shape-preserving)
motions, and we found that they could be expressed with the help
of one of the polar decompositions of the deformation gradient.
We ask now the question: What is the most general form of a
shape preserving motion of an object?

Suppose that an affinely deformable object is given in a stress-
free reference configuration, in which, moreover, the material
symmetry group is the full orthogonal group O. The reason for
imposing these restrictions (which we have already imposed on
our pseudo-rigid coin, anyway) is that we want to avoid the ques-
tion of the interplay between material and geometrical symmetry.
In other words, we want the motion to be congruent not only
geometrically, but also materially at all times. Let the geometrical
symmetry group of the object in this reference configuration be
GC O, namely, a group consisting of some rotations and reflec-
tions. This group controls the possible shape preserving motions.
Let G(7) € G and R(7) € O be time-dependent orthogonal transfor-
mations, and let U be a time independent symmetric positive-

definite referential tensor. Then, the most general shape-
preserving motion of the object is given by
r(r) =ry(2) + R(1)UG(z). (69)

If the object has no geometrical symmetries, then the only way to
achieve a shape preserving motion (according to this formula) is
to deform it arbitrarily by means of a fixed U and follow this by a
time-dependent rotation and a translation. If, on the other hand,
geometrical symmetries are available, we are allowed to use them
first, without altering the resulting shape. In the case of the coin,
the symmetry group G is the group of all rotations around the
Z-axis, reflections about the X-Y plane and rotation of magnitude
7 around the X-axis. If we assume the function G(f) to be con-
nected, then the only part that matters is the subgroup of all rota-
tions about Z.

We will now apply these concepts to describe and analyze a
cylindrical steady motion of the pseudo-rigid coin. The coin shall
remain always vertical while revolving around the spatial y-axis in
a circular path of radius r. Because of the assumed verticality, this
radius can be measured either to the center of the coin or to the
point of contact with the ground (x-z plane). Let ¢ denote the
angle from z to the line between the origin and the point of con-
tact, measured positively according to the right-hand rule. We
want the main plane of the coin to be constantly perpendicular to
this last line (so that the motion can be called “cylindrical”). We
assume the motion to be actually driven by a rigid horizontal arm,
at a given height B from the ground, connecting the center of the
coin with the y-axis. The connection at the center of the coin is
assumed to be pin-jonted, so as to allow free rotations. Finally, we

SEPTEMBER 2005, Vol. 72 / 699



assume the arm to be rotating at a constant rate ¢=c, while the
applied time-dependent geometrical symmetry is a rotation i

about Z, also at a constant rate = 3.

Because the motion is driven, we disregard the first three equa-
tions of motion, Egs. (55)—(57). The deformation gradient is now
given by

. a 0 0
Xy Xy X3 cos¢p 0 sing
0c O
yi y2 y3l=| O 10 |
21 2 % —sing 0 cos¢||0O O —
ac
cosyy —sinyg 0
X|sing cosygp O (70)
0 0 1
or
i in ¢
acos ¢pcos iy —acos ¢sin iy
X1 X2 X3 ac
yiy2 y3|= csin ¢ ccos i 0
N 2 2 cos
R —asin ¢cos ¢y asin ¢psin ¢
ac
(71)
Substitution into Eq. (48) yields:
I'=d?c>. (72)

Plugging these results into the equations of motion, one can ob-
serve that they can be fulfilled identically for all times if, and only
if, the following relations hold:

yo=Re, (73)
ra=—-Rpa, (74)
a2+,82=k<1—#>, (75)
4)\=,82—k<1—#>, (76)
Quc=—aafBsin ¢, (77)
2ve=—aafcos . (78)

Fixing, for example, the values of the height y,, the arm length ,
and the angular velocity « of the arm, we can solve for the shape
of the ellipse (a and c), the spin B, and the ground reaction \, u,
and v. We observe that the horizontal ground reaction is radial
(centrifugal), as expected. Notice that Eq. (74) is the pseudo-rigid
version of the no-sliding condition ra=RfB for the rigid
counterpart.

Intuitively, we realize that the cylindrical motion just discussed
cannot occur without it being driven, since the weight does not
have a moment-arm to produce the necessary change of angular
momentum. This intuitive observation is confirmed by checking
that Egs. (55) and (57) could not be satisfied by any solution of
Egs. (73)—(78). To have the possibility of a self-sustaining steady
motion, we need to consider a conical movement, just like a twirl-
ing dish. Let 0 be the angle of tilt, which we will assume positive
if the top of the dish is closer than the bottom to the y-axis. To
locate the dish at an arbitrary position of its conical motion, we
proceed in 4 steps, 3 of them identical to the cylindrical motion:
(i) Rotation of the circular dish about the (material) Z-axis by an
amount ¢; (ii) Deformation to a time-independent “horizontal”
ellipse; (iii) Tilting by a time-independent angle 6 (clockwise)
around the spatial x-axis; (iv) Rotation by an angle ¢ about the
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spatial y-axis. These steps represent just the rotations. The trans-
lation is given, as before, by a circular motion of the center of the
dish consistent with the ¢-rotation. The deformation gradient is
now given by

X| Xy X3 cos¢p 0 sing |[1 0 0
Yi Y2 Y3 |= 0 1 0 0 cosf siné
21 2 23 —sin¢g 0 cos¢ [|[0 —sind cos b
a 0 .
cos iy —sinyg 0O
0 ¢ .
singg cosyp O (79)
00 — 0 0 1
ac
By direct substitution into Eq. (48) we obtain
I =d%?, (80)

which is the same result as for cylindrical motion. A detailed
substitution into the equations of motion leads to the conclusion
that they can be satisfied identically if, and only if, the following
relations between the parameters hold:

yo=Rc cos 0, (81)
ra=—-R(Ba+casin b), (82)
2c 1
a2+B2+—Ca,Bsin 0=k<1—ﬂ>, (83)
a a‘c
4N=p? k(l L) (84)
- a*ct)’

2a s . . 1 .
4pcos 0=|—-—af - (a”+ B)sin O+ksin 6| 1 — —— | |sin ¢,
c a‘c

(85)

2a 2 . . 1
4vcos =|-—aB-(a"+ B7)sin +ksin 6| 1 — —— | |cos ¢.
¢ a‘c

(86)

Unlike the case of cylindrical motion, these equations do not in-
volve a contradiction with Egs. (55) and (57) and, therefore, the
possibility exists that conical motion may be self-sustaining. A
case of particular interest is that for which r=0, namely, with the
center of the dish constantly above the origin. In the case of cy-
lindrical motion, the movement would degenerate into pivoting,
but in the case of conical motion we obtain the everyday experi-
ence of the wobbling of a dish. For this case we obtain that the
ground reaction is perfectly vertical (w=v=0) and that the rates of
rotation are related by

c .
B=——asin 6.
a

(87)

Suppose that the tilt # and the angular speed « are given. Then,
the deformed steady shape is obtained by solving the following
two simultaneous equations:

1 1
PR (%)
and
1
27 2
; == (89)

<,
— sin” 6-1
a

We then calculate the Lagrange multiplier A from Eq. (84). This
motion will be self-sustaining for an acceleration of gravity g
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=\Rc cos 0.

Setting the acceleration of gravity to zero, we should be able to
obtain the most general shape-preserving motion of a pseudo-rigid
dish free in space. We expect in this case (as in its classical rigid
counterpart) that we will no longer be at freedom to specify both
the tilt and the angular speed. The extra condition is obtained by
setting \ in Eq. (84) to zero. Surprisingly, the equation obtained is
in contradiction with Egs. (87)—(89), thus implying that there do
not exist shape-preserving free conical motions, except pivoting
and rotation in a plane. (It should be pointed out that these two
extreme cases may elude the general formulas, since they were
obtained by simplifying by trigonometric functions that may van-
ish at 0 or 7/2.)

In closing this section we note that, although the calculations
were carried out for a neo-Hookean material only, similar solu-
tions exist for any other hyperelastic material as long as it is fully
isotropic. Lack of isotropy will in general preclude these shape-
preserving solutions. (For instance, the quantity I" will no longer
be constant.)

4 Numerical Studies

4.1 Nondimensionalization. For the purpose of numerical
studies, it is best to obtain a nondimensionalized version of the
dynamical equations, so as to minimize and rationalize the num-
ber and type of examples. Define the nondimensional space and
time variables by means of the formulas

.5(‘0 = .Xo/R, )70 = yo/R, ZO = Zo/R, (90)

and

1

T=1vk. 1)

We note that the variables x,yq,...
sional by nature. Denoting:

,z3 are already nondimen-

0 ==}(),

we can rewrite the dynamic equations (55)—(63) and the con-
straints (49)—(51) in the following nondimensional form:

d 92)
1

0= 50, (93)
o==8+\. (94)
2’6:55707 (95)
" Y2(x1ys = xay1) + 2p(x125 — Xp2y) _
x1=—(x1— 2 X1y 21F22 122 ~ X%y —4fiy,, (96)
"_ = Xp(x1y2 = Xoy1) + 25(y122 = 221) -
yi==\y- 2 — 4Ny,
(97)
” —X (X 2y — X% ) -y (y 2~ Y2 ) ~
Z1=_<Zl_ 2\X12p 211“2 2122 — Y2y —4%y,, (98)
"_ =310y = xy1) = 21 (xy 22 = %21) ~
==\ X2— 2 =4[y,
(99)
"_ X1 (Y2 = xy1) = 21122 = ¥221) =
Yo==1{Y2— e —4\y,,
(100)
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i <Zz_ xl(mz—Xzzl);2y1(y1Zz—yzzl)> 43y,

(101)
Fo=yi+y3, (102)
Xoyo=x1y1 +x3y2, (103)

Y0 =21V1 + 25)2 (104)

where

centroid height
0.?734z27}
0.773426F
0.7734251

0.7734z4af

accenbricicy

0635812}
0.545312F
0.645811
0. 625&11F
0.545811
0.645311}

(c)

Fig. 2 Centroid height (a), eccentricity (b) and trajectory of
point of contact (c), for g=0.05008
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Fig. 3 Centroid height (a), eccentricity (b) and trajectory of
point of contact (c), for g=0.045

N=MNk, p=wpk, v=vlk, (105)
and
- &
== 106
g=1r (106)

This last nondimensional parameter, g, remains as the only vestige
of the actual properties of the coin. It combines the acceleration of
gravity g, with the size R and the stiffness-density ratio k. In other
words, examples must differ either in the value of g, or in the
initial conditions, or in both.
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sccentricity
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0.64

D.625&

0.625

(b)

Fig. 4 Centroid height (a), eccentricity (b) and trajectory of
point of contact (c), for g=0.055

4.2 The Limit g—0. For a given radius, the surviving physi-
cally meaningful nondimensional parameter g may tend to zero
for two reasons: either the gravity field disappears or the stiffness
of the material tends to infinity. Although the effect on the solu-
tion of the system is identical for both cases, the interpretation of
the results is not. In the first case (g=0) we obtain (as we have
done in several examples already) the actual physical situation of
lack of gravity. The general solutions obtained will, therefore,
provide a meaningful result under those conditions. For example,
in the case of pivoting, Eq. (68) reduces to
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(a) g =002

(d) 5 =005

(z=007 (h) g=0.09

Fig. 5 Trajectory of point of contact for various values of g

a*=c*,

(107)

which, after substitution into Eq. (67), yields the following rela-
tion between the (nondimensional) angular velocity and the (non-
dimensional) minor semiaxis of the ellipse:

@=1-c°

(108)

a perfectly legitimate result. On the other hand, if k were to be-
come very large, we would have to be more careful in interpreting
this result. Indeed, in trying to redimensionalize the angular ve-
locity [namely, w>=k@*=k(1-c%], we would conclude that the
right-hand side of Eq. (108) would have to vanish, so that c=1, as
it should in a rigid-body deformation. The velocity of pivoting
then becomes indeterminate, as it should, since a rigid coin can be
made to pivot at any speed. Similar arguments apply to all other
instances of passing to the limit: the vanishing of the gravity g
causes no problem of interpretation, but the unboundedness of &,
although having the same mathematical effect, does.

4.3 Example. According to Egs. (87)—(89), the wobbling of a
pseudo-rigid dish right above the origin of coordinates may take
place at constant shape if the deformed semiaxes, the angle of tilt,
the angular speeds of “precession” and “spin” and the stiffness
ratio are properly proportioned. On nondimensionalization, how-
ever, the stiffness ratio is completely absorbed into the angular
speeds. Always using the convention that tildes denote nondimen-
sionalized quantities, Eq. (89) becomes

— -1
a*c?

=, (109)
< sin? 9—1
e
while Eq. (88) remains unchanged, since it is already nondimen-
sional. Setting, for the sake of a numerical experiment, c=0.9 and
the tilt #=30, we obtain @=0.506599, B=-0.203557, and a

=1.119928. Finally, Eq. (84) yields \=0.064161. As pointed out
after Eq. (89), this value of the Lagrange multiplier can be gener-
ated automatically by the weight of the dish provided the param-

eter g is set to the value: g= Ac cos #=0.050008. A consistent set
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of initial conditions (corresponding to starting the motion when
the point of contact lies on the z-axis) is X,=0, Jp=c cos 6
=0.779423, 7Zy=0, x1=a=1.119928, x,=0, y;=0, y,=ccos
=0.779423, z,=0, zo=—c sin #=-0.45, x| =0, xéz—aﬁ—c& sin 6
=0, y;=cBcos #=-0.158657, y,=0, zj=—ad@-cBsin b=
-0.475753, z,=0. The equations of motion have been pro-
grammed in MathematicaR. Figure 2 shows the numerical solution
for the height of the center of mass y, [Fig. 2(a)], the ratio be-
tween the semiaxes of the deformed dish [Fig. 2(b)], and the trace
of the point of contact on the horizontal plane. As expected, and
with a great degree of accuracy, it is observed that after 4 com-
plete revolutions (7=401r) the height of the center of mass is still
at its initial value (to 5 significant digits), the ellipse eccentricity
has remained constant (to the same accuracy), and the trace of the
point of contact is a perfect circle. The next two figures (Figs. 3
and 4) show the same quantities when the parameter g is first
reduced (to 0.045) and then increased (to 0.055) without changing
the initial conditions. The resulting incompatibility with our con-
ditions for constant shape is reflected in corresponding oscillations
of the height of the center of mass and the eccentricity, while the
point of contact exhibits a more erratic behavior. This behavior
seems, however, to abide by the regularity of being confined be-
tween two concentric circles. In Fig. 5 we show the trajectory for
a wider range of values of g and for a longer period of time (7
=1007). For values of g higher than 0.09, the behavior at large
times seems to become chaotic. It is clear that a detailed analytical
study, beyond the scope of this paper, will serve to provide a
predictive scheme and to define zones of instability.
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rational function which matches the analytic solution over all rotations. The other is an
exponential approximation that reproduces the asymptotic values of the analytic solution

at infinitesimal and infinite rotations. Finally, finite element solutions for the Lubkin
problem are compared with the exact and approximate solutions.
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1 Introduction

Lubkin [1] considered two spheres pressed together and then
subjected to a monotonically increasing couple aligned with the
force of contact (see Fig. 1). He derived analytic expressions for
the applied couple M in terms of k' =c/a, where a is the radius of
the contact patch and ¢ is the radius of the region that remains
stuck at torque amplitude M. He also derived a corresponding
expression for the relative rotation S associated with that value of
radius ratio k. (Actually, Lubkin defined the relative rotation to
be one half of the difference of the absolute axial rotations of the
spheres and that convention is continued here.) Both of these ex-
pressions involved complete elliptic integrals and other singular
integrals, but with the aid of tables of special functions he was
able to obtain plots of torque versus angle (M versus B).

Deresiewicz [2] later looked at this problem and examined the
same geometry where the torque amplitude is oscillated in a posi-
tive and negative sense. In this work Deresiewicz employed Tay-
lor series for M (k") and B(k’), retaining only two or three terms in
those series. He inverted the first series to obtain k" in terms of M
and substituted the result into the second series to obtain S in
terms of M. He similarly obtained expressions for the case of
reversal of applied torque and finally obtained his well-known
expression for energy dissipation as a function of torque.

Unlike the analogous derivation for energy dissipation under
oscillatory tangential forces (Mindlin et al. [3]), the Deresiewicz
expressions were derived from ruthlessly truncated Taylor series
and are valid only for cases of very small torque magnitude. Be-
cause the rotational motion of contacting surfaces is a significant
source of fretting fatigue (Chateauminois and Briscoe [4] and
Briscoe et al. [5]) and also because the dissipation of such motion
is often a source of vibration damping or of whirl in rotational
machinery, it is important to obtain better approximate models of
this process.

The work presented here compares the Deresiewicz equations
for torque versus angle and for dissipation versus torque with
numerical solutions of the original integral equations to define the
regions of validity of those approximations and to present some
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other approximate but more globally applicable expressions for
the quantities of interest. In the process, we discuss the Masing [6]
properties of the rotating sphere problem and demonstrate how to
calculate the energy dissipation from the torque curve associated
with a monotonically applied couple. Additionally, finite element
analysis is performed to support the new relations introduced here.

2 Monotonic Rotation

Lubkin derived the following equation (modulo the normaliza-
tion) for the dimensionless torque as a function of k" (or its trigo-

nometric complement k=\1-k'?)

T(k) = ﬁ % + k' K6K (k) + (4k'* = 3)D(k)]

/2 . .
K'sin(e))d
— 3kK(karesin(k') — 36%| K(k) J arcsin(ksin(a))da
o (1—k""sin*(a))¥?

—D(k)f arcsm(k sin(a))da )

-k st(a )1/2

where T=M/(uNa), K and E are complete elliptic integrals of the
first and second kind, D(k)=(K(k)—E(k))/k?, a is the radius of the
contact patch, u is the coefficient of friction between the spheres,
and N is the force pushing the spheres together.

Lubkin also derived the following equation (again modulo a
normalization) for the relative angle of twist between each sphere
and the plane of contact:

0(k) = %TkzD(k) (2)

where 6=8Ga*/(uN) and G is the shear modulus.

In presenting his version of Eq. (1), Deresiewicz points out that
he is correcting a typographic error of Lubkin’s. The complex
form of the above equation has subsequently resulted in other
typographic errors occurring in the literature. The problem is ex-
acerbated by the inconsistent definitions for the elliptic integrals
to be found in the literature. (Two well-known, but inconsistent
sources are Lebedev [7] and Abramowitz and Stegun [8].)

Deresiewicz reformulated Eq. (1) and expanded it and Eq. (2)
as Taylor series in k, retaining two terms in each series. He em-
ployed these truncated series to solve for relative rotation in terms
of moment. When that equation is inverted, it takes the form
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Fig. 1 Lubkin considered two spheres pressed together by
forces N and then subjected to a monotonically applied torsion
M. The resulting relative rotation (one half the difference in ab-
solute rotation) is indicated by g. Indicated in the inset is the
radius a of the contact patch and the radius ¢ of the stuck
region.

T3S - 1420 ¥

for monotonically applied twist.

Both Lubkin and Deresiewicz observe that the true moment-
rotation curve should start from the origin with an initial slope of
16/3 and increase monotonically to an asymptotic value of
3m/16. Deresiewicz demonstrates that his approximation satisfies
the first of these conditions. A numerical evaluation of Egs. (1)
and (2) is compared to the approximation of Deresiewicz in Fig.
2. In that figure, the Deresiewicz approximation matches the nu-
merical evaluation of the exact equation in only a very small zone
near the origin and differs from it substantially away from the
origin. In fact, the approximation is not even globally monotonic.
It peaks above the analytic maximum value of 37/16. Further,
examination of Eq. (3) shows that the torque of the approximation
becomes negative as 6 becomes large.

A far better approximation for the torque-rotation relation is
obtained by fitting a fourth-order Padé¢ rational function approxi-
mation to the results of numerical integration:

a0+a10+ a262+a3&2+a464

TP(0)=b0+b19+b262+b303+b464 @
where
ay=0 by=1
a;=16/3 b, =5.1193
a,=6.0327 b, =15.6833 (5)

ay=19.6951 b =30.8099
a,=42.5359 b,=722111

This approximation agrees with the numerical evaluation of Eq.
(1) to within 2x10™> over the whole range (0 << §<<c°).
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Fig. 2 The Deresiewicz approximation for T(6) for monotonic
rotation appears to be adequate only for the very small values
of rotation. A rational function (Padé) approximation overlies
the values calculated from Lubkin’s integral equation and ap-
pears to be adequate over the whole range of values computed.

An alternative approximation is that of Cuttino and Dow [10]
based on the results of the finite element analysis of relative rota-
tion of contacting ellipsoids. For the case of circular contact
treated here, their expression reduces to the following

T(0) =0.62[1 —exp(- 10 6)] (6)

which has an incorrect limiting value of 0.62, about 5% higher
than the analytic value. The finite element mesh used in the above
calculation was very coarse by today’s standards, but very respect-
able for the time.

A natural modification of Cuttino and Dow’s approximation is
the following, constructed to reproduce the Lubkin result at zero
and infinity:

2
T(g)=(37'r/16)[1—eXP<_<£)(%6> )] 7

The above approximation along with that of Cuttino and Dow are
plotted in Fig. 3. Equation (7) is a substantially better approxima-
tion to the Lubkin results, though it does have some small visible
error in the region 0.1 < #<0.5.

3 Oscillatory Rotation

The above observations about the limitations of Deresiewicz’s
approximation for monotonic rotation suggest a re-examination of
the Deresiewicz approximation for energy dissipation in oscilla-
tory rotation, which is similarly based on a severely truncated
Taylor series.

Deresiewicz’s approximate equation for dimensionless energy
dissipation per cycle under oscillatory dimensionless torque of
amplitude T is

pn=2fi1-(-20"]-i-(-1") @

where D is the energy dissipation normalized by (uN)?/(Ga).
Deresiewicz points out that the above expression behaves as
D(T)=(%)T3 for small torques T.

We now introduce another approach to evaluating the energy
dissipation associated with oscillatory torque. This approach ex-
ploits the observation that the torque/rotation hysteresis curves for
oscillations between —6,, and 6,, are consistent with the Masing
[6] conditions:
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Fig. 3 The Cuttino and Dow approximation has the correct
general form, but approaches incorrect asymptotic values. An-
other approximation of the same general form, but constructed
to have the correct asymptotic values is a substantially better
approximation though it does have some small visible error in
the region 0.1<6<0.5.

6,+6

TF( 0, em) = ZTO( ) - TO( em) (9)

T5(6,6,) =~ 2T0< O 0) +To(6,) (10)
where T is the torque on the forward part of the hysteresis loop,
Tp is the torque on the backward part of the hysteresis loop, and
Ty(6) is the torque curve associated with monotonic rotation (of-
ten called the “backbone” curve.) It was Deresiewicz who ob-
served these symmetries between forward and back motion,
though he did not connect these symmetries to Masing models.
These relations are illustrated in Fig. 4 where the Padé approxi-
mation to the backbone curve is used to draw the hysteresis plots
for rotation between 6=-0.04 and #=0.04 and for the rotation
between 6=-0.5 and 6=0.5.

Hysteresis from Backbone Curve
0.2 . T . . . . T

0.051

Torque T(®)
o

—015F o

— Backbone
,‘ - = Forward Motion

=+ Backward Motion
: T

0.02 0.03

-0.02 001 0 0.01
Angle 6

-0.2 p
-0.04 -0.03 0.04

D|SS|pat ion from Deresiewicz and from HystereS|s Curve
10 T
—_— From Deresu-}wwz

- (316) T
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10 v=oe 316 } E

Dissipation per Cycle
=

. .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Torque T@)

Fig. 5 The Deresiewicz approximation for dissipation per
cycle appears to be adequate for only small values of applied
torque. The dissipation at large torques calculated from hyster-
esis appears to go to infinity.

The energy dissipation is the area enclosed by the T and T
curves and with reference to Egs. (9) and (10) this quantity is

4
D(1(60) =8 f T(ndr- 16 7(6) (11)
0

The Deresiewicz approximation for energy dissipation per cycle
is compared in Fig. 5 with that obtained by the numerical evalu-
ation of Eq. (11) where T(6) is obtained from the Padé approxi-
mation. We see that the Deresiewicz approximation for dissipation
per cycle goes as (2)7% for small values of T, as does the exact
solution (Lubkin [IT) However, the Deresiewicz approximation
remains bounded as torque 7 approaches its limiting value of
3m/16. The numerically obtained dissipation values appear to
grow to infinity as 7" approaches its limit.

An observation can be made about the nature of the singularity
one may expect in the dissipation per cycle as T approaches its
limiting value of 37/16. From Fig. 6, we see that the difference of

Hysteresis from Backbone Curve

Torque T()

—— Backbone

~ = Forward Motion

=+ Backward Motion
T T

0.8 . ! . . ) . T
-0.1 0 0.1 0.2 0.3 0.4 0.5

Angle 6

Fig. 4 The Padé approximation for the numerically obtained backbone curve is used to draw the hysteresis plots for 6
=0.04 and #=0.5. At large rotation angles, the slope of the hysteresis curve just before reversal becomes very small.
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Fig. 6 The asymptotic behavior of the torque associated with
large angles is shown in the plot of log(37w/16- T(6)), suggest-
ing that the difference of the torque and its limiting value goes
as 623, Note that the Padé approximation overlies the data
points obtained through numerical evaluation of Lubkin’s
equation.

the torque and its limiting value appears to go as #'23 for 6
>0.5, suggesting the following asymptotic form for rotation angle
in terms of torque for large rotations:

1 (377/16—T(6))
—log| —————=
A \3m/16-1T(6,)

where A is the slope of the asymptotic plot in Fig. 6 (approxi-
mately —12.3), 6,, a value greater than 0.5, and 7(6,,) is the torque
corresponding to 6,, on the monotonic torque-rotation curve (Fig.
2).

For oscillatory rotation at similarly large angles of twist, the
slopes of the hysteresis curves just before reversal (at the corners)
are near zero (see the right hand plot in Fig. 4). Letting D(6,,) be
the energy dissipation per cycle corresponding to 6,,, the dissipa-
tion per cycle at some larger rotation will be approximately that
due to the additional rotation acting through the peak torque.
Therefore,

0-0,

m

(12)

.=

D(6) ~D(em)+z%”<e— 0,) (13)

as indicated in Fig. 7. This is the same approximate dissipation
that would be obtained by expanding Eq. (11) about (6,,,D(6,,))
and noting that d7(6)/d6) 9, 18 approximately zero.

Substituting the above into Eq. (12), we obtain the following

3wl ( 3716 — T(6) ) (14)

D) =DU6,) + 2 log\ S Ta,)
indicating a logarithmic singularity in the dissipation per cycle as
a function of applied torque.

Having explored the anticipated asymptotic form of the dissi-
pation as a function of torque amplitude, we observe that the
dissipation of Eq. (I11) can be evaluated in closed form for the
case of the asymptotically correct approximation embodied in Eq.
(7). Noting also that Eq. (7) can be inverted for 6 in terms of T,
we have

(3)2{ [ (377) ] [(377/16)—T]}
D) =4l — | {27+ | 2| = | =7 |In| ———
16 16 (37/16)

(15)

which indeed contains the expected logarithmic singularity.

4 Finite Element Analysis

Since the unbounded levels of energy dissipation at high levels
of oscillatory torque (Eq. (14)) are a new result, it would be com-
forting to support this observation by independent means. Finite
element analysis provides that independent means.

An additional reason to submit the problem of elastic spheres
under oscillatory torsional couple to finite element analysis is that
this problem is a very sensitive measure of the accuracy of such
analysis. Though the previously mentioned finite element study
(Cuttino and Dow) employing a commercial finite element code,
was heroic for the time, their analyses were insufficient to repro-
duce the Lubkin results to within 5%. Such errors are likely at-
tributable to discretization error (overly coarse meshes), though
the meshes they used reflected the state of code and computers
available at that time.

The above considerations motivated numerical re-examination
of the Lubkin problem via finite element analyses with much finer
meshes. The finite element code JAS, developed at Sandia Na-
tional Laboratories, was employed with the more appropriate
hemispherical mesh shown in Fig. 8. This mesh employs approxi-
mately 67,000 8-node hex elements and 70,000 nodes. The ele-
ment size is particularly small in the region of the contact patch
where slip is anticipated. There the radial spacing of the elements
is approximately 0.05. (The hemisphere radius is exactly 1.) Each
element spans approximately 7.5 deg circumferentially. This mesh
contrasts with that of Cuttino and Dow, which had fewer than
2500 elements.

Figure 9 shows the ramp-up torque (backbone curve) and the
hysteresis curve associated with the normalized rotation angle 6
=0.3. Also shown is the hysteresis plot that would be obtained by
applying Egs. (9) and (10) to the ramp-up torque. We see that the
hysteresis loop predicted by the finite element analysis is nicely
consistent with the Masing conditions.

The ramp-up torque calculated in the finite element analysis is
plotted in Fig. 10 along with the Padé approximation to the nu-

2A0 |

Fig. 7 Once the peaks of the hysteresis curve approach the limiting torque, additional rotations result in
additional dissipation approximately equal to the area of the rhombus shown
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Fig. 8 A very fine mesh is employed to capture the Lubkin result with good precision. This
mesh employs approximately 67 000 8-node hex elements and 70 000 nodes.

merical solution to Egs. (1) and (2). We see that though there is
some visible difference between the finite element predictions and
the Padé approximation for 0.1 < #<0.3, there is overall reason-
ably good agreement, giving us confidence in the finite element
results. This confidence permits us to trust the dissipation that is
also calculated in the finite element analysis.

The dissipation per cycle calculated from the finite element
analysis is shown in Fig. 11, along with the dissipation estimates

Finite Element Hysteresis: Mapping the Backbone Curve
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Fig. 9 The hysteresis curve calculated by the finite element
code JAS for a normalized angle of #=0.3. This hysteresis
curve manifests the symmetries associated with Masing

models.
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calculated by other means. That finite element dissipation is
shown to be neatly bounded by the predictions of the hysteresis
calculations based on the Padé approximation and by the dissipa-
tion of Eq. (15). (Recall that Eq. (15) was derived from the as-
ymptotically correct ramp-up approximation of Eq. (7).) Further,
the finite element results are consistent with the logarithmically

singular behavior of Eq. (14).

Torque vs Rotation for Monotonic Twist
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Fig. 10 The ramp-up torque calculated by the finite element

code is reasonably consistent with the numerical evaluation of
Egs. (1) and (2), as represented by the Padé approximation
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Dissipation from Deresiewicz and from Hysteresis Curve
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Fig. 11 The dissipation per cycle calculated from the finite el-

ement analysis is consistent with the logarithmically singular
behavior predicted by Eq. (14)

5 Conclusions

The above analysis illuminates several points.

1. The Deresiewicz approximations for torque and for dissipa-
tion are best used only in regimes of very small rotation.

2. The torque-rotation relations of the rotating sphere problem
manifest the properties of Masing models.

3. Two new approximations have been introduced. The first
(Eq. (4)) is a rational function approximation to the Lubkin
results that, though cumbersome, is very nearly exact over
the entire range of 6. The second (Eq. (7)) has the same
simple form as that of Cuttino and Dow, but was constructed
to have the correct asymptotic behavior. This new approxi-
mation also has substantially less error overall than does that
of Cuttino and Dow.

710 / Vol. 72, SEPTEMBER 2005

4. The energy dissipation grows logarithmically as the magni-
tude of torque amplitude approaches its limiting value. This
logarithmic behavior is manifested by:

(a) The hysteresis calculations based on the Padé approxi-
mation for the ramp-up torque;

(b) the energy dissipation of Eq. (15) derived from the as-
ymptotically correct approximation presented in Eq.
(7);

(c) the finite element results.
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We present a new multiscale/stabilized finite element method for compressible and incom-
pressible elasticity. The multiscale method arises from a decomposition of the displace-
ment field into coarse (resolved) and fine (unresolved) scales. The resulting stabilized-
mixed form consistently represents the fine computational scales in the solution and thus
possesses higher coarse mesh accuracy. The ensuing finite element formulation allows
arbitrary combinations of interpolation functions for the displacement and stress fields.
Specifically, equal order interpolations that are easy to implement but violate the cel-
ebrated Babushka-Brezzi inf-sup condition, become stable and convergent. Since the
proposed framework is based on sound variational foundations, it provides a basis for a
priori error analysis of the system. Numerical simulations pass various element patch

tests and confirm optimal convergence in the norms considered.
[DOL: 10.1115/1.1985433]

1 Introduction

Application of the finite element method to the mixed varia-
tional formulations of elasticity has been an area of active re-
search for over two decades. Attention has particularly been fo-
cused at incompressible elasticity [1] because of its fundamental
place in solid mechanics in general and its ability to model a wide
class of materials in particular. Volume preserving or the isochoric
mode of deformation is an important kinematic constraint on the
response of several materials [2]. Especially, in finite deformation
elasto-plasticity, the plastic or the inelastic response of several
metals and polymers is assumed volume preserving. Standard dis-
placement based techniques for incompressible elasticity show an
overly stiff response commonly termed as “locking” and require
special treatment to yield engineering solutions, e.g., the use of
mixed-methods [3-7], reduced and selective integration tech-
niques [8—11], stress projection techniques [2,12,13], and B-bar
methods [10]. Published literature on the treatment of locking
phenomena is exhaustive [2,3,6—19], and the interested reader is
referred to the standard texts by Brezzi et al. [20] and Hughes [21]
for an overview of the various techniques.

Our objective in this work is to develop a stabilized formulation
for incompressible elasticity such that the definition of the stabil-
ity parameter appears naturally in the developments. The idea of
using stabilized methods in computational solid mechanics is mo-
tivated by the success of stabilized methods in the area of com-
putational fluid dynamics. Even though the similarity of the mixed
u—p form of incompressible elasticity with the Stokes equations
was pointed out in Hughes et al. [22], the remark largely went
unnoticed and the application of stabilized methods to incom-
pressible elasticity lagged behind its application to fluid dynamics.
Relatively recently, attempts have been made to employ Galerkin/
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least-squares method for elastoplasticity [23], Petrov-Galerkin
method for finite elasticity [17], and multiscale method for mod-
eling weak discontinuities in solids [24].

In this paper we employ the variational multiscale method [25]
and present a systematic procedure for the development of a sta-
bilized formulation, here on termed as the Hughes variational
multiscale (HVM) formulation, for compressible and nearly in-
compressible elasticity. Within the context of elasticity wherein
the underlying continuum formulation does not possess any
scales, the word multiscale is to be viewed as the computational
scales in the solution to the Galerkin form of the problem. A
novelty of the present method as compared to the celebrated sta-
bilized methods, namely the streamline upwind Petrov-Galerkin
(SUPG) and the Galerkin/least-squares (GLS) methods is that the
present method is free of user defined or user designed stability
parameters. In addition, a canonical expression for the stability
parameter appears naturally in the developments presented in Sec.
2 and 3. A significant advantage of using stabilized formulations
for incompressible elasticity is that the issues related to locking in
the incompressible limit are completely avoided, and the need for
special treatments, namely, the stress projection techniques, re-
duced integration techniques, and the use of special interpolation
polynomials is completely bypassed. Another significant advan-
tage of the stabilized methods is that arbitrary combinations of
interpolation functions can be employed for the displacement and
pressure fields. Specially, equal order interpolations that are easy
to implement but are unstable within the classical Galerkin frame-
work, become stable and convergent.

An outline of the paper is as follows: Section 2 presents a
mixed form of elasticity and its corresponding standard Galerkin
form. The multiscale computational framework and the math-
ematical steps that lead to the stabilized form are presented in Sec.
3. Numerical simulations are presented in Sec. 4, and conclusions
are drawn in Sec. 5.

2 A Mixed Form of Elasticity

Let Q) C R"s¢ be an open bounded region with piecewise smooth
boundary I". The number of space dimensions, ny, is equal to 2 or
3. The unit outward normal vector to I' is denoted by n
=(ny,n,,...ny). The mixed displacement-pressure form of elastic-
ity that is valid for compressible and nearly incompressible behav-
ior [1] is given as follows:

V-o+b=0 inQ) (1)
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1"e-2-0 inQ )
K

u=g onl, 3)

o-n=t onl, (4)

where u(x) is the displacement vector field and p(x) is the scalar
pressure field. K is the bulk modulus defined as K=E/3(1-2v).
Equation (1) represents equilibrium in body Q, Eq. (2) is the
volumetric constitutive equation in ), Eq. (3) is the Dirichlet
boundary condition on I',, and Eq. (4) is the Neumann boundary
condition on [',.

2.1 Standard Variational Form. The standard variational
form of the boundary value problem is stated in terms of the
following spaces for trial solutions and weighting functions.

S={ulu € H'(Q),u=g on r} (5)
V={wlw e H'(Q),w=0on T} 6)
P={plp € L,(Q)} (7)

Because there are no explicit boundary conditions on pressures, P
suffices as both a trial solution space and a weighting function
space. The weighted residual form for the equilibrium and the
volumetric constitutive equation is as follows:

f Vw:a-dQ:J w-bdﬂ+fw~tdf ()
Q Q r

f q(lTs—%>dQ=0 9)
QO

where w and g are weighting functions corresponding to displace-
ment # and pressure p, respectively. We split the stress tensor into
two parts: Deviatoric stress s and pressure p

o=s5+pl
= Zlu'Ideve +p1
=D"g+D"p (10)

where w is the shear modulus, 1 is the second order unit tensor, I
is the rank four unit tensor, and I ., =1 —% 1®1 is the deviatoric
projection of I. D"=D(I —% 1®1) is the deviatoric projection of
elastic matrix D, and D*"P=1=[1 1 1 0 0 0]~

Remark 1: The standard form (8) and (9) is required to satisfy
the celebrated Babushka-Brezzi inf-sup condition [20] to yield
stable and convergent elements in the incompressible limit.

3 The Variational Multiscale Method

3.1 Multiscale Decomposition. In this section we apply the
variational multiscale method, first proposed by Hughes [25], to
the development of a stabilized formulation for a mixed form of
elasticity that is applicable in the incompressible limit. We con-
sider the bounded domain () discretized into nonoverlapping re-
gions Q¢ (element domains) with boundaries I'¢, e=1,2, ... 7,1
such that

Mumel
Q= U O

e=1

(11)

We denote the union of element interiors and element bound-
aries by ()’ and I'’, respectively.
Mumel

Q' = U (int)Q°

e=1

(elem . interiors) (12)
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Mymel
I'"=UT* (elem. boundaries) (13)
e=1
We assume an overlapping sum decomposition of the displace-
ment field into coarse scales or resolvable scales and fine scales or
the subgrid scales.
ulx)= ulx) +u'x)
coarse scale  fine scale

(14)

Remark 2: For the case of elasticity wherein the underlying
continuum formulation does not possess any scales, the coarse and
fine scales should be viewed as the computational scales in the
solution to the Galerkin form of (8) and (9), i.e., u(x) represents
part of the solution that is resolved by a given grid, and u’(x)
represents the error in the solution.

Likewise, we assume an overlapping sum decomposition of the
weighting function into coarse and fine scale components indi-
cated as w and w', respectively.

w(x)= E(,x_), + w'(x)

coarse scale  fine scale

(15)

We further make an assumption that the subgrid scales, al-
though nonzero within the elements, vanish identically over the
element boundaries.

(16)

Employing (14) in the definition of the symmetric strain tensor,
we can decompose the strain field into two components.

u'=w'=0 onl"

e=3(Vu+V'u)

=31(Vu+VTu)+ 3(Vu' + V')

=e+¢ (17)
where € is the coarse scale strain field while €’ is the fine scale
strain field. Because of (16), £’ is defined locally within an ele-
ment and is discontinuous across element boundaries.

We define the corresponding discrete spaces of functions
S", P, and V", and write the Galerkin form as;

f Vw”:MdQ:f w”-bdQ+fwh~tdI‘ (18)
Q Q T

o
j qh(ﬂeh - —)dQ =0
o K

The decomposed form of the displacement field u given in (14)
can be represented via interpolation functions as

(19)

np

Ny
u'(x) = X, N, + > N, (20)
a=1 a=1

where n,; is the number of displacement nodes in the element, and
ny, is the number of interpolation functions for the fine scales in
the element. V represents coarse scale shape function that can be
associated with the standard Lagrange interpolation functions,
while N’ represents fine scale shape functions and in general they
can be represented by any functions that satisfy (16). Without loss
of generality we assume that in the present problem N’ are rep-
resented by the so-called bubble functions.

Remark 3: Shape functions N and N’ should be linearly inde-
pendent so as to ensure that u#(x) Nu'(x)=0.

The pressure field p"(x) is represented as
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p
plx)= > Nip,

a=1

21

where n,, is the number of pressure nodes, N” represents the shape
functions for the pressure field, and p represents the nodal values
of the field.

3.2 Decomposition of the Galerkin Form. Substituting (15)
into (18) and exploiting the linearity of the weighting function slot
we can split Eq. (18) in a coarse scale and a fine scale problem.
Since we have assumed fine scale pressure p’=0, therefore, ¢’
=0. Accordingly, Eq. (19) only contributes to the coarse scale
problem. Since the trial solutions and weighting functions are im-
plied to be functions of 4, therefore, to keep the notation simple,
explicit dependence on 4 is suppressed.

Coarse scale sub-problem:

f VW:a-dQ:J W-bdﬂ+fw‘tdl’
Q QO T
fq(lTs—E)dﬂzo
Q K

Fine scale sub-problem:

J Vw’:on:f w’~bdQ+fw’~tdF (24)
Q Q r

Our objective at this point is to solve the fine scale problem,
defined over the sum of element interiors, to obtain the fine scale
displacement field u’. This fine scale field can then be substituted
in the coarse scale problem (22) and (23), thereby eliminating the
fine scales, yet retaining their effect.

(22)

(23)

3.2.1 Solution of the Fine-Scale Sub-Problem. Substituting
Eq. (10) into Eq. (24), and noting that w'|r»=0 one obtains

f Vw':(D"e+D"p)dQ) = f
o Q'

Inserting Eq. (17) into Eq. (25), and then employing (20) and
(21) we get

w'-bdQ (25)

f Vw’:D”“:V]TIdQﬁ+f Vw' D" VN'dQu'
Q’ Q'

+f Vw’:D“”-N"de:f w'-bdQ (26)
Q’ Q'

The weighting functions w’ corresponding to fine scales are
also represented via bubble functions N’

w' = (N,ﬁd;)Tz (&lr)T(Nr)T

Substituting Eq. (27) into Eq. (26) and by employing arbitrariness
of w' we can write the variational problem in its matrix form as
follows:

(27)

Ku'+Ku+Kp=R, (28)
where
K = J VIN'D*V N'dQ) (29)
Q'
K,= f VIN'D“V N dQ) (30)
Q'
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K3=f VIN'D"**"N?d() (31)
Q'

R1=f (N)T-bdQ (32)
o

The fine scale displacement coefficients u’ can now be obtained
from (28) as follows.

u' =K'[R, - Kyt - Kp] (33)

3.2.2  Solution of the Coarse-Scale Sub-Problem. Substitut-
ing Eq. (10) into Eq. (22), one obtains

f Vw:( ”“8+D”pp)d9=f W-th+fW~tdF (34)
Q Q r

Inserting Eq. (17) into Eq. (34) and then employing (20) and (21)
we get

f Vw:D":VNdQu+ f Vw:D":VN'dQu'
Q Q

+f VW:D“P-Nl’dezf W-bd9+fw-tdr
) QO T

(35)

The weighting functions w corresponding to the coarse scale
displacements are represented via the standard interpolation func-
tions N.

w=(Néd) = (ad)"(N)" (36)

Substituting Eq. (36) into Eq. (35), and employing arbitrariness of
w, we can write the matrix form as follows:
K4E+K5u’ +Kw =R2 (37)

Substituting the fine scale coefficients u’ from Eq. (33) leads to
the following matrix form

Kju+KK;'[R -Ku—-Kpl+Kp=R, (38)
which can be further simplified as
(K, - KsK{'K>)u + (Ks— KsK{'K;)p =R, - KsK7'R,  (39)
where
K,= J VIND“V N dQ) (40)
QO
Ks= f VIND"“V N'dQ (41)
QO
K¢= f VIND*’NPdQ) (42)
)
Rzzfﬁr-bd9+fNT~tdl" (43)
Q T

Remark 4: 1t is important to note that (39) is completely ex-
pressed in terms of the coarse/resolvable scales of the problem.

3.2.3  The Volumetric Constitutive Equation. Substituting Eq.
(10) in the volumetric constitutive Eq. (23) and employing (20)
and (21) we get
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_ 1
glU"VNdQu+ | gql"VN'dQu' - | g=N’dQp=0
Q o o K

(44)

The weighting function ¢ corresponding to pressure p can be rep-
resented as

q=N’'ép (45)

Substituting Eq. (45) into Eq. (44) and employing arbitrariness of
q leads to the following matrix form of equations.
Kiu+Kgu' +Kp=0 (46)

Substituting the fine scale coefficients u’ from Eq. (33) into (46)
yields the following.

Kju+KK;'[R, - Kyt —Kpl+Kop =0 (47)
Simplifying this expression we get
(K; - KK7'Ky)u + (Ko — KoK 'Ky)p = — K K'R, (48)
where
K;= f NPTDPV N dQ) (49)
Q
Kg= f N'TDPY N' dQ) (50)
Q
Koy=- f NPTDPPNPAQ) (51)
QO
D"=1"=[111000] (52)
D=t (53)
K

3.3 Matrix Form of the HVM Formulation. Combining
Egs. (39) and (48), the mixed displacement-pressure formulation
can be written in the matrix form as follows:

K4—K51(TIK2 Ko—Kst1K3] u Rz—Kslqul
K;-KK'K, Ko-KK['Ks [|p] | -KeK('R,
(54)

where u represents the unknown displacement degrees of freedom
and p represents the unknown pressure degrees of freedom. Now
that we have derived the stabilized/multiscale formulation, we can
make some simplifications in (54) by noting the following: Kg
=K”; Ky=K2; K,=K~ and K;'=K;". Accordingly, Eq. (54) can be
written as

K4‘K§KTIK2 Kﬁ_KgIrllK3 u R2—K§KI'R1
K{-KK'K, Ko-KiK('Ks||p) | -KiK('R,
(55)

Remark 5: Equation (55) is the stabilized finite element matrix
form for the mixed displacement-pressure form of elasticity.

Remark 6: The left-hand side matrix in (55) is a symmetric
matrix which is expressed entirely in terms of the coarse/
resolvable computational scales of the problem. Fine scales have
been substituted for by the additional terms in the matrix. These
terms stabilize the formulation while consistently representing the
fine computational scales in the problem.

Remark 7: An analogy with the stability parameters employed
in the stabilized methods for Stokes flow can be made by observ-
ing that K Uis playing the role of the so-called stability parameter
in (55). It is important to note that in the present method, an
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Fig. 1 A family of 2D linear and quadratic elements

explicit definition of K;' appears and is given in (29).

Remark 8: We can make a direct comparison of Eq. (55) with
the standard mixed form for elasticity that can be obtained by
dropping the stabilization terms. Without the subscale effect, Eq.
(55) will reduce to matrix form of Egs. (8) and (9) as follows:

MR

As mentioned earlier, this form is required to satisfy the inf-sup
condition [20] to yield stable and convergent elements in the in-
compressible limit.

4 Numerical Simulations

The stabilized formulation (55) has been used for several test
problems presented in this section. Figure 1 shows the family of
two-dimensional (2D) elements employed in the numerical stud-
ies. Dots correspond to the displacement nodes and circles corre-
spond to the pressure nodes. Q4B and Q9B are 4- and 9-node
quadrilaterals with one bubble function, and T3B and T6B are the
3- and 6-node triangles with one bubble function. In each case,
appropriate quadrature rules were used to fully integrate the stiff-
ness matrices.

Figure 2 shows the location of the bubble functions employed
for the quadrilaterals and triangles, respectively. We have em-
ployed the simplest polynomial bubbles, which in the element
natural coordinate frame are expressed as follows:

N(g, n)quads. = (1 - 52)(1 - 772)

N(g, ﬂ)triangles =2Trst= 27577(1 - g_ 77) (57)

The following section presents various patch tests and beam
bending problems which serve as standard benchmark problems in
the solid mechanics literature. The superior performance of the
stabilized elements under severe geometrical distortions is also
presented. Also presented are numerical rate of convergence stud-
ies for these elements, which confirm optimal convergence rates
in the norms considered.

(56)

4.1 Plane Stress Patch Tests. The first set of numerical simu-
lations consist of plane stress patch tests [26]. The uniform mesh

©
O Pressure node

®
+ Displacement node ® Bubble node

Fig. 2 Bubble functions employed for quadrilaterals and
triangles
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Fig. 3 Patch test with regular elements

configuration and the skewed mesh configuration used in the tests
are shown in Figs. 3 and 4, respectively. Meshes for triangular
elements were generated by splitting the quadrilaterals.

The elastic coefficients used in both cases are E=1 and v
=0.25. The first test case in Fig. 3 is an axial stretch with nodal
loads equivalent to a pure axial normal stress of unit intensity
applied along edge AB. The exact solution is u;=x; and u,

Axial load  Bending load
B 1.5 30

O o >

£1-%

5
c a b Al L3

0 0

P

-~
30 Boundary condition
for load caze I only

Fig. 4 Patch test with distorted elements

Table 1 Normalized displacements at point A in Figs. 3 and 4
Uniform mesh Skewed mesh
Element
Type u;(A)-axial  u,(A)-bending u;(A)-axial u,(A)-bending
Q4 1.00 0.987 1.00 0.944
QM6 1.00 1.00 1.00 0.978
Q4B 1.00 0.996 1.00 0.972
T3B 1.00 0.958 1.00 0.879

=—x,/4. (The origin for the two meshes is taken to be at point C.)
The second test case is a linearly varying normal stress of magni-
tude x, on edge AB. Due to antisymmetry of the problem, half of
the mesh is modelled, with antisymmetry boundary conditions
imposed on the nodes along edge AC. The bending solution to this
problem is u;=x,x, and uy=—3((x})>= v(x,)?).

Table 1 shows normalized displacements evaluated at node A
for the axial and bending deflections for the two mesh configura-
tions. For comparison purposes we have presented the response of
Q4 which is the standard 4-node quadrilateral and QM6 which is
the Taylor-Wilson [19] incompatible modes quadrilateral element.
Accordingly, we present the performance of the linear triangle
T3B and bilinear quadrilateral Q4B. The axial stretch in both the
configurations is exactly satisfied. The bending solution to an ap-
plied moment in the form of a couple is a quadratic polynomial. In
the uniform mesh configuration, only element QM6 with incom-
patible modes captures the solution exactly. This is because the
incompatible modes contain quadratic terms in the coordinates of
the parent domain ¢ and # which coincide with the global coor-
dinates for the uniform mesh and can, therefore, fully represent
the exact solution. However, the incompatible modes are not com-
plete second-order polynomials, and therefore, in the skewed
mesh configuration, are unable to fully capture the exact
displacement.

The axial stress at points a—g is exact for the axial stress case on
both the mesh configurations. Therefore these results are not pre-
sented here. For the bending load case, the stresses obtained for
Q4B at the points a—g are presented in Tables 2 and 3.

Remark 8: By studying patch tests we can detect the rigid body
modes, any false zero energy modes and invariance of the element
under change in global orientation. Preliminary tests, not pre-
sented herein, indicate that our elements do not possess false zero
energy modes and are invariant under change in global orienta-
tion.

4.2 Sensitivity to Mesh Distortion. This is a standard test for
evaluating the sensitivity of the elements to mesh distortion and
serves as a benchmark problem in element evaluation. Such test-
ing has been an important ingredient in element development,
investigating completeness of the interpolation polynomial and
checking the constant stress states of the element. A cantilever
beam, modeled by two quadrilateral elements, is subjected to a
bending moment in the form of a couple (see Fig. 5). The edge
separating the two elements is then gradually rotated about its
center, a distance of +a on the top and the bottom surfaces, to
distort the mesh. The degree of geometric distortion of these ele-
ments is represented by the dimension a. The same test is per-
formed on triangles by bisecting the quadrilaterals. The elements
used in the test are 6-node triangles and 9-node quadrilaterals (see
Fig. 6). Linear triangles and bilinear quadrilaterals are not pre-
sented because of their inability to capture bending behavior

Table 2 Normalized axial stresses for the bending load case on the uniform mesh (except for

point a, where the exact solution is zero)

Element a b c d e f g
Q4 ~0.033 0.988 0.988 0.987 0.986 0.987 0.998
QM6 0.000 1.000 1.000 1.000 1.000 1.000 1.000
Q4B —0.012 1.010 1.000 0.996 0.994 0.993 0.992

Table 3 Normalized axial stresses for the bending load case on the skewed mesh (except for

point a, where the exact solution is zero)

Element a b c d e f g
Q4 —0.008 0.798 1.204 0.957 0.908 0.986 0.946
QM6 —0.007 0.910 0.908 0.986 1.001 0.999 1.003
Q4B —0.008 0.721 1.201 0.975 0.927 1.016 0.944
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Fig. 5 Sensitivity to mesh distortion. 9-node quadrilaterals.

(which is a quadratic polynomial) even in the undeformed con-
figuration. The normalized displacement at point A and the nor-
malized stress at point B, respectively, are presented in Table 4.
The exact solution is a quadratic polynomial, and hence quadratic
elements show no deterioration with mesh distortion as long as the
edges are kept straight (Table 4).

4.3 Rate of Convergence Study. This section presents the
mathematical rate of convergence study for displacements in the
L,(Q) norm and the energy norm, and for pressure in the L,(Q))
norm. The exact solution depends on Poisson’s ratio; the value
0.4999 is employed in the calculations to model the nearly incom-
pressible behavior of the material. In the present study, plane
strain conditions are assumed in force. The configuration consid-
ered here is shown in Fig. 7. A cantilever beam of length-to-depth
ratio equal to five is subjected to a parabolically varying end load.
Boundary conditions are set in accordance with an exact elasticity
solution. This is a standard problem that is employed to assess the
performance of plane-stress—strain elements subjected to domi-
nant in-plane bending behavior. The meshes shown consist of 16
quadrilateral and 32 triangular elements. Finer meshes are con-
structed by bisection. In the case of the quadratic elements, a
coarser mesh is also employed with one layer of elements through
the depth.

The exact solution to an applied shear force is a third-order
polynomial. Numerical examples in the following section show
that with successive mesh refinements, the finite element solution
converges to the exact solution at nearly the optimal rate of con-
vergence for the norms considered. For the linear elements, i.e.,
3-node triangle and the 4-node quadrilateral, the theoretical rate of
convergence for the displacement field in the L,({2) norm and the
energy norm is 2 and 1, respectively, while optimal rate for the
pressure field in L,()) norm is 2. Figures 8—10 present the nu-
merical rates of convergence of linear elements. Figure 8 shows
convergence in the L,()) norm of the displacement field and we

— «— 1000
B
Ji ~
A
2

10

B 1000

Fig. 6 Sensitivity to mesh distortion. 6-node triangles.

Table 4 Normalized displacements at node A and normalized
stress at node B

Normalized displacements Normalized stress

Distortion at node A at node B
a T6B Q9B T6B Q9B
0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0
3 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0
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Fig. 7 Cantilever beam with edge shear

see nearly optimal rate of convergence. Figure 9 presents conver-
gence in the energy norm and optimal rates are attained. The
convergence in the L,({)) norm of the pressure field is presented
in Fig. 10 which is again nearly optimal.

For the quadratic elements, i.e., 6-node triangle and 9-node
quadrilateral, the theoretical convergence rates for the displace-
ment field in L,({) and energy norms are 3 and 2, respectively,
while optimal rate for the pressure field in L,(€) norm is 3. The
corresponding numerical rates are presented in Figs. 11-13. Ex-

-2 T

—4— 3 node triangle

-5
—a— 4 node quadrilateral

-6 ‘ ‘ T T T
-0.2 0.0 0.2 0.4 0.6 08 1.0
Log (1/h)

Fig. 8 Convergence rates for the L, norm of the displacement
field (linear elements)
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Log (1/h)

Fig. 9 Convergence rates for the energy norm (linear
elements)
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Fig. 10 Convergence rates for the L, norm of the pressure
field (linear elements)

cept for the L,()) norm of the pressure field for 6-node triangle,
which is sub-optimal, we get theoretical convergence rates of all
the other fields in the quadratic elements.

4
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Fig. 11 Convergence rates for the L, norm of the displacement
field (quadratic elements)
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Fig. 12 Convergence rates for the energy norm (quadratic
elements)
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Fig. 13 Convergence rates for the L, norm of the pressure
field (quadratic elements)

4.4 Accuracy Study. This test presents the engineering con-
vergence properties for the family of elements. A cantilever beam
is loaded via edge shear, and boundary conditions are set in ac-
cordance with the theory of elasticity (see Fig. 7). In these simu-
lations Poisson’s ratio is 0.4999 to simulate nearly incompressible
behavior, and plane strain conditions are assumed in force. Figure
14 shows the pressure contours for the 3-node triangle T3B, while
Fig. 15 presents the contours for the 4-node quadrilateral Q4B.
Figure 16 shows a composite mesh made of triangles and quadri-
laterals in the same computational domain with the superposed
pressure contours. This figure is intended to show the advantage
of using the stabilized methods wherein one can arbitrarily com-
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Fig. 14 Contours of the pressure field for the 3-node element
mesh
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Fig. 16 Contours of the pressure field for the composite mesh

bine various element types in the same computational domain; a
feature which can be very appealing from a practical view point of
problem solving.

Figures 17 and 18 present the normalized tip deflection conver-
gence and normalized stress convergence for the linear triangle
T3B and the bilinear quadrilateral Q4B, respectively. Likewise,
Figs. 19 and 20 present the normalized tip deflection convergence
and normalized stress convergence for the quadratic elements T6B
and Q9B, respectively. These plots present uniform convergence
of displacements and stresses, and also show substantial increase
in the coarse-mesh accuracy attained by increasing the order of
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Fig. 17 Tip deflection convergence for 3-node and 4-node
elements
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Fig. 18 Stress convergence for 3-node and 4-node elements
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Fig. 19 Tip deflection convergence for 6-node and 9-node
elements

interpolation. As expected, the linear triangle and bilinear quadri-
lateral are comparatively stiff, while the accuracy of all the qua-
dratic elements is excellent.

4.5 Cook’s Membrane. This problem, first proposed in Ref.
[16] as a test case for general quadrilateral elements, shows the
bending performance of the elements under excessive mesh dis-
tortion. The configuration is a tapered panel with one edge fixed
and the opposite edge acted upon by a distributed shear load (see
Fig. 21). There is no known analytic solution for this problem but
the results for a 32X 32 mesh are used for comparison purposes.
Plane strain conditions are assumed enforced. The Poisson’s ratio
is 0.4999 as is used in Simo and Armero [18] and Kasper and
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Fig. 20 Stress convergence for 6-node and 9-node elements
"t g
16 /f'/ —

\\
B
F

. S— I

44

™

\ 3 |

Fig. 21 Cook’s membrane
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Fig. 22 Tip deflection convergence

Taylor [27]. The vertical deflection at the top corner of the tip is
presented in Fig. 22. The standard displacement based 4-node
quadrilateral element shows a poor response all across. One of the
proposed stabilized-mixed elements, the equal-order 4-node ele-
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Fig. 23 Tip deflection convergence as a function of Poisson’s
ratio
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Fig. 24 Contours of the pressure field for the 4-node element
mesh
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ment is compared with the enhanced strain element of Simo and
Armero [18] and the mixed-enhanced strain element of Kasper
and Taylor [27]. Figure 23 presents the response at the tip as a
function of the Poisson’s ratio. The present element works all the
way to the incompressible limit, as does an element based on the
Galerkin/Least-squares stabilization. However, pure displacement
based standard element shows severe locking in the incompress-
ible limit.

Figure 24 shows the pressure contours for the 4-node quadrilat-
eral Q4B. Figure 25 shows a composite mesh made of triangles
and quadrilaterals in the same computational domain with the su-
perposed pressure contours. Once again we obtain a smooth pres-
sure profile for the composite mesh.

5 Conclusions

We have presented an application of the variational multiscale
method [25] for developing stabilized finite element formulations
for compressible and nearly incompressible elasticity. The novelty
of the present method is that the definition of the so-called stabil-
ity parameter appears naturally in the derivation. The proposed
method is based on sound variational foundations, thus providing
a basis for a priori error analysis of the system. The resulting finite
element formulation allows arbitrary combinations of interpola-
tion functions for the displacement and pressure fields, and thus
yields a family of stable and convergent elements. Various bench-
mark problems have been solved to show that the developed ele-
ments do not possess false zero energy modes and are invariant
under change in global orientation. Numerical tests of plane stress
and plane strain elements have been presented to show the supe-
rior accuracy of the elements. Rate of convergence studies have
been carried out that show optimal convergence rates in the norms
considered and corroborate the theoretical convergence rates for
the displacement and the stress fields.
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Numerical Analysis of Nanotube
Based NEMS Devices — Part I
Role of Finite Kinematics,
Stretching and Charge
Concentrations

In this paper a nonlinear analysis of nanotube based nano-electromechanical systems is
reported. Assuming continuum mechanics, the complete nonlinear equation of the elastic
line of the nanotube is derived and then numerically solved. In particular, we study singly
and doubly clamped nanotubes under electrostatic actuation. The analysis emphasizes
the importance of nonlinear kinematics effects in the prediction of the pull-in voltage of
the device, a key design parameter. Moreover, the nonlinear behavior associated with
finite kinematics (i.e., large deformations), neglected in previous studies, as well as
charge concentrations at the tip of singly clamped nanotubes, are investigated in detail.
We show that nonlinear kinematics results in an important increase in the pull-in voltage
of doubly clamped nanotube devices, but that it is negligible in the case of singly clamped
devices. Likewise, we demonstrate that charge concentration at the tip of singly clamped
devices results in a significant reduction in pull-in voltage. By comparing numerical
results to analytical predictions, closed form formulas are verified. These formulas pro-
vide a guide on the effect of the various geometrical variables and insight into the design
of novel devices. [DOI: 10.1115/1.1985435]

1 Introduction

Nano-electromechanical systems (NEMS) are attracting signifi-
cant attention because of their properties to enable superior elec-
tronic computing and sensing. By exploiting nanoscale effects,
NEMS present interesting and unique characteristics. For in-
stance, NEMS based devices can have an extremely high funda-
mental mechanical oscillation frequency [ 1-4], while preserving a
robust mechanical response [5]. Several NEMS applications have
been proposed, such as mass sensors [6], rf resonators [6], field
effect transistors [7] and electrometers [8]. Carbon nanotubes
(CNTs) have long been considered ideal building blocks for
NEMS devices due to their superior electromechanical properties.
CNT-based NEMS reported in the literature include nanotweezers
[9,10], nonvolatile random access memory devices [11], nanore-
lays [12], rotational actuators [13] and recently proposed
feedback-controlled nanocantilever NEMS devices [14]. All these
reported devices can be simply modeled as CNT cantilevers or
fixed-fixed CNTs hanging over an infinite conductive substrate. In
order to design a functional NEMS device, its electromechanical
characteristic should be well quantified in advance. During the
past years, a lot of progress has been achieved in regard to the
modeling of CNT-based nano-devices [15]. Generally, sufficiently
large diameter multiwalled carbon nanotubes (MWNTS), i.e., with
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diameters of ~20 nm and higher, can be modeled to a good ap-
proximation as homogeneous cylindrical beams and perfect con-
ductors, meaning that quantum effects and finite scale charge dis-
tribution are negligible at this dimension [16]. Three main types of
forces have to be considered in the modeling of the electrome-
chanical characteristic of CNT-based NEMS devices: the elastic
forces, the electrostatic forces, and the van der Waals forces aris-
ing from the atomic interactions. For the elastic restoring forces,
the classical continuum mechanics theory is applicable to CNT
devices as demonstrated by molecular dynamics simulation [15].
The electrostatic forces are typically computed by using a capaci-
tance model [17], so that a precise modeling of the capacitance of
CNTs is a key issue in their description. We discuss this point,
emphasizing the role of charge concentration at the tip of cantile-
ver nanotubes, based on classical electrostatics. For the van der
Waals forces, a continuum model based on Lennard-Jones poten-
tial theory was employed in the literature [15]. The effect of the
van der Waals force on the performance of the CNT devices could
be significant in the case of small gaps between nanotube and
substrate or for sufficiently long nanotubes [14,15]. Another im-
portant but typically omitted effect in the modeling of nano-
devices is finite kinematics, which accounts for large displace-
ments. Note that for doubly clamped nanotubes, a dramatic
increase in the elastic energy stored in the nanotube is expected as
a consequence of the stretching imposed by the rope-like behav-
ior. In this paper, we investigate the electromechanical character-
istics of singly and doubly clamped CNT-based NEMS, as illus-
trated in Fig. 1: a biased MWNT cylinder of length L, placed
above an infinite ground plane, at a height H. The inner radius and
outer radius of MWNT are R;,, and R, respectively. The applied
voltage between nanotube and substrate is V.

The paper is organized as follows. First, an analysis of the
charge distribution arising from the electrostatic field is presented.
The nonlinear elastic line equation is then derived. This equation
is integrated numerically and compared to analytical predictions

Transactions of the ASME
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Fig. 1 Schematic of nanotube based NEMS devices

derived elsewhere. We close the paper with conclusions concern-
ing the conditions under which finite kinematics and end charge
concentration cannot be neglected for two boundary conditions,
singly and doubly clamped devices.

2 Analysis of Charge Distribution

During the past years, significant progress has been made in
regard to the computation of the charge distribution along finite-
length nanotubes. For conductive nanotubes, essentially classical
distribution of charge density with a significant charge concentra-
tion at the tube end has been observed [18-20]. Recently a model
based on three-dimensional electrostatic calculations has been
proposed in [21] to describe the charge distribution along finite
length MWNTs cylinder, in particular, the concentrated charges at
the tube ends.

Figure 2 shows the charge distribution along the length of a
freestanding nanotube of length L, subjected to a bias voltage of 1
V. The contour plot shows the charge density (side view), while
the curve shows the charge per unit length along the nanotube.
The calculation is performed using the CFD-ACE+ software (a com-
mercial code from CFD Research Corporation based on finite and
boundary element methods). The calculations and model reported
in [21] are valid as long as the conductive nanotube radius, Ry, is
larger than ~10 nm, and the length of the tube, L, is much larger
than H and R, In these cases quantum effects and size-limit
effects in the charge distribution can be considered negligible
[21].

The capacitance per unit length along the cantilever nanotube,
under moderate deflections, is approximated as [21]

C[r(x)] = Cd[r(x)]{l + 085[(H + Rext)zRext] " 5(X - Xlip)}
=Cd[r(x)]{1 +fc}7 (1)

where the first term in the bracket accounts for the uniform charge
along the side surface of the tube and the second term, f,, ac-
counts for the concentrated charge at the end of the tube; x=x,
# L, as a result of the finite kinematics; &(x) is the Dirac distri-
bution function. C,[r(x)] is the distributed capacitance along the
side surface per unit length for an infinitely long tube, which is
given by [17]
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Fig. 2 Charge distribution for a biased nanotube. The device
parameters are R.;=9 nm, H=100 nm and L=1 pum.
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Fig. 3 Schematic of the finite kinematics configuration of a
cantilever nanotube device subjected to electrostatic forces
and van der Waals forces
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— (2)
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Clrx)]=

where r is the distance between the lower fiber of the nanotube
and the substrate, and g, is the permittivity of vacuum (g,
=8.854 X 10712 C°N~! m™2). Thus, the electrostatic force per unit
length of the nanotube is given by differentiation of the energy as

follows:
1 ,dC 1 dcC
=— 2—=—V2<_d) 1+f.
Gelec 2 dr 2 dr { fL}

ey V?

. (1+fo) (3)
Vr(r+ 2R, )a coshz(l + —)

ext
In the above equation r(x)=H-w(x), with w being the deflection
and V the bias voltage.

3 Nonlinear Elastic Line Equations

3.1 Singly Clamped Nanotube. The deflection of a cantilver
nanotube under electrostatic force and van der Waals force is
shown in Fig. 3. The electrostatic force per unit area remains
perpendicular to the outer surface of the nanotube under finite
kinematics as imposed by the electrical field. The electrostatic
force per unit length of the cylinder is also perpendicular to the
cylinder axis. Here we ignore the force applied to the end surface
of the cantilever.

Accordingly, if we just consider the bending of the cantilever,
the governing equation of the elastic line under finite kinematics is

[22]

&
d* dx? dw )
Elﬁ (l (dw)2)3/2 = (quw + qelec) 1+ E s (4)
+|—
dx

where E is the Young modulus, /=m(R% ~R; )/4 is the moment

of the inertia of the nanotube; ¢4, is the van der Waals force (per
unit length) between the nanotube and the substrate and can be
evaluated by the method reported in [15], assuming the substrate
consists of 30 graphite layers. Equation (4) represents the elastic
line equations for a nanotube under finite kinematics. As a conse-
quence of the large flexibility of the nanotube, it remains in the
elastic regime. Equation (4) clearly represents a more accurate
description of the elastic behavior of nanotubes, than the more
common equation assuming small displacements, i.e., dw/dx<<1
d*w

E]E =Gelec T Gvaw (5)
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Fig. 4 Schematic of the finite kinematics configuration of a
fixed-fixed nanotube device subjected to electrostatic forces
and van der Waals forces

3.2 Doubly Clamped Nanotube. For a doubly clamped
nanotube, stretching becomes significant as a consequence of the
rope-like behavior of a fixed-fixed nanotube subjected to finite
kinematics shown in Fig. 4. A tension 7 in the nanotube has to be
introduced, so that the elastic line equation becomes [22]

d dx* dx?
El E aw\2\32 |~ T dw\2\32
()7 D))
dx dx
dw)\?
= (quw + qelec) I+ (E) (6)

The tension 7 is related to the axial strain &, namely [23],

EA (" (aw\?
T=FEAs~— | =] ax (7)
2L o dx

where A is the cross-sectional area of the nanotube. Combining
Egs. (6) and (7), we can obtain the governing elastic line equation
for the equilibrium position as

r (nm)
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70 ]
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0 500 1000 1500 2000 2500 3000 3500
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Fig. 5 Elastic line for fixed-fixed nanotube at V=5 V. The solid
line is for finite kinematics, the dotted line assumes small
deformations.
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Fig. 6 Electromechanical characteristic (central displace-
ment-voltage curve) for fixed-fixed nanotube device. The
dashed line is for small deformation model (pure bending), the
solid line is for finite kinematics model (bending plus
stretching).

dx

EA (d_w)d az
o, \ax) ( (dw>2>3’2
1+

dw \?
= (quw + qelec) I+ (d_> (8)
X
Here the electrostatic force per unit length g is given by Eq. (3)
setting f,.=0, since the tip charge concentration for this boundary
condition does not take place.

If dw/dx<<1, the classical equation for small displacements,
Eq. (5), which neglects the stretching of the nanotube, is again
recovered. In addition, for moderately finite kinematics:
(dwldx)?><1, so that Eq. (8) becomes

110
100

== =L1=2000 nm
—=1=2000 nm

90 — — L=3000 nm
—L1=3000 nm
80 —=== 124000 nm
70 — L=4000 nm
E 60
~ 50
40
30
20
10
o +—rr—r—r—r—-Tr—_
0 10 20 30 40
V(volt)

Fig. 7 Electromechanical characteristics (central displace-
ment-voltage curve) for fixed-fixed nanotube devices with dif-
ferent lengths L. The dashed lines are for small deformation
model (pure bending), the solid lines are for finite kinematics
model (bending plus stretching).
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Fig. 8 Electromechanical characteristics (central displace-
ment-voltage curve) for fixed-fixed nanotube devices with dif-
ferent R,,; and H=100 nm. The dashed lines are for small de-
formation model (pure bending), the solid lines are for finite
kinematics model (bending plus stretching).

d'w EA ("[aw\* &*w
AT 57 R =Gelec T Gvaw (9)
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4 Nonlinear Numerical and Theoretical Pull-In
Voltage Predictions

Solving numerically the previous nonlinear equations for sin-
¢gly, and doubly clamped nanotube NEMS devices by direct inte-
gration (Egs. (4) and (5)) and finite difference method (Egs. (5)
and (9)), respectively, the pull-in voltage corresponding to the
nanotube collapsing onto the ground substrate can be predicted.
This parameter is key in an optimal device design, corresponding
to the transition between open and close states in applications
such as nano-switches, nano-tweezers, etc.

The computed results are reported in Figs. 5-9 for doubly
clamped and in Figs. 10 and 11 for singly clamped nanotube de-
vices. Unless otherwise specified we have considered Ry,
=10 nm, R;;,=0, E=1 TPa, H=100 nm, and for fixed-fixed
nanotube L=3000 nm, whereas for cantilever nanotube L
=500 nm. In Fig. 5, the elastic lines of the nanotube under a
difference in the electrostatic potential of 5 V are reported. The
solid line corresponds to the finite kinematics case while the dash

200 -~~~ H=100 nm
——H=100 nm
180 — — H=150 nm
160 H=150 nm
= =H=200 nm
140 H=200 nm
120
E 100
A
80
60
40
20
 +—rrrrrrrrrr—r T T
0 10 20 30 40 50 60 70 80
V (volt)

Fig. 9 Electromechanical characteristics (central displace-
ment-voltage curve) for fixed-fixed nanotube devices with dif-
ferent H. The dashed lines are for small deformation model
(pure bending), the solid lines are for finite kinematics model
(bending plus stretching).

Journal of Applied Mechanics

120 4
100

80

60 N

r (nm)

40

20

0 T T T T T 1
0 5 10 20 25 30

15
V (volt)

Fig. 10 The effect of finite kinematics on the characteristics of
the cantilever nanotube based device (tip displacement versus
voltage). The solid lines show the result accounting for finite
kinematics, while the dashed line shows the result if finite ki-
nematics is neglected. Both cases consider the concentrated
charge at the end of the cantilever nanotube.

line corresponds to the small deformations case. The role of stiff-
ening due to the rope-like behavior is quite remarkable. In Fig. 6
the central deflection of the nanotube as a function of the applied
voltage is reported for both cases, i.e., with and without stretch-
ing. The two vertical lines correspond to the reaching of the
pull-in voltages. In Figs. 7 and 8 similar results considering dif-
ferent lengths and radii are reported for both cases. Again, the role
of the stretching has been found not negligible. The effect of H on
the pull-in voltage is illustrated in Fig. 9. It is interesting to note
that when H changes from 100 to 200 nm the pull-in voltage more
than quadruples.

For the cantilevered nanotube, the displacement of the tip as a
function of the applied voltage is reported in Fig. 10. In this fig-
ure, the effect of the finite kinematics is shown. As expected, the
role of the finite kinematics becomes less significant than for the
doubly clamped boundary condition. The pull-in voltages (insta-
bilities) correspond to the vertical lines. Both numerical solutions
reported in Fig. 10 consider the charge concentration at the tip of

120 1

V{volt)

Fig. 11 The effect of the charge concentration on the charac-
teristics of the cantilever nanotube based device (tip displace-
ment versus voltage). The solid line shows the deflection curve
with the concentrated charge. The dashed line shows the de-
flection curve without the concentrated charge. Both curves
are from small deflection model.
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Table 1

Comparison between pull-in voltages evaluated numerically and theoretically ([24,25]) by Eqs. (10) for doubly (D) and

singly (C) clamped nanotube devices, respectively, E=1 TPa, R;,;=0. For cantilever nanotube device the symbol (w) denotes that

the effect of charge concentration has been included.

Vp [V] Ve [V]
Vpr [V] Vpr [V] (theo. (num.
H L R=R. (theo. (num. non- non-
Case BC [nm] [nm] [nm] linear) linear) linear) linear)
1 D 100 4000 10 3.20 3.18 9.06 9.54
2 D 100 3000 10 5.69 5.66 16.14 16.95
3 D 100 2000 10 12.81 12.73 36.31 38.14
4 D 150 3000 10 9.45 9.43 38.93 40.92
5 D 200 3000 10 13.53 13.52 73.50 77.09
6 D 100 3000 20 19.21 18.74 31.57 32.16
7 D 100 3000 30 38.57 37.72 51.96 50.63
8 S 100 500 10 27.28w) 27.05(w) 27.52(w) 27.41 (w)
9 S 100 500 10 27.28(w) 27.05(w) 30.87 31.66

the cantilever nanotube. Figure 11 shows the error in the pull-in
voltage, if the charge concentration is ignored. It is inferred that
the error can be appreciable.

Recently, analytically derived formulas to compute the pull-in
voltage, corresponding to the approximated solutions of the pre-
vious nonlinear equations, have been obtained equating to zero the
first two derivatives (related to equilibrium and instability) of the
free energy of the system [24,25]. Because devices of interest
have gaps in the range of 0.1-1 wm, achievable with currently
available manufacturing techniques, the effect of van der Waals
force is negligible before pull-in happens [15]. Thus, we consider
cases in which g,4,=0 in the analytical analysis [24] and in the
comparison between numerical and analytical predictions. Ac-
cordingly, the pull-in voltages for singly (S) clamped NEMS de-
vices can be computed as

Vg=k '1+KFKH1n< ZH)\/EI (10a)
= | —_— —_— -, a
g] s s L2 Rexl €0
8H?
ks=~085 Ki=~—7 (10b)

917

Subscripts S refer to single clamped boundary conditions. Super-
script FK refers to finite kinematics. Moreover, taking into ac-
count the additional energy concentrated at the tip of the cantile-
ver nanotube and following the method described in [24], one
finds the additional corrective term for the charge concentration at
the tip, according to Eq. (1), as

Vs
VTIP — PI TIP 2‘55[Rext(H + Rext)2]1/3 (IOC)
1§1 \*"1 + KTP L

For doubly (D) clamped NEMS devices, the pull-in voltage can
be expressed as

— ,TkFKHHe] <2(H+R)> [EI
= | — n — —_—
b= N ED Ty R €0

1024 128 [ cpr |2
kD=\/—<i>,kgK=—<m) (11b)
SmS’(cp) \H+R 3003\ p

2 2
R+ Ri,

_ lext

I
A 4

(11a)

p’=
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S(c)=§ {1n(2(H+R))Ji§'aij<(H+R)) (11c)
R

Subscripts D refer to double clamped boundary conditions; cpy is
the central deflection of the nanotube at the pull-in, and the {a;;} in
Eq. (11¢) are known constants [25].

From the Figs. 6—10 numerically predicted pull-in voltages can
be obtained. We compare these results with the theoretical predic-
tions resulting from Egs. (10) and (11). Note that the comparison
does not involve a best fit parameter. The results are reported in
Table 1. Columns six and seven in Table 1 compare analytical and
numerical pull-in voltage predictions under the assumption of
small deformations. The agreement is good (with a maximum dis-
crepancy of 5%). Columns eight and nine in Table 1 compare
analytical and numerical pull-in voltage predictions under the as-
sumption of finite kinematics.

5 Conclusions

In this paper a nonlinear analysis for singly and doubly clamped
nanotube based nano-electromechanical system (NEMS) devices
has been reported. Assuming Continuum Mechanics, the complete
nonlinear equation of the elastic line of the nanotube is first de-
rived and then numerically solved for the two considered bound-
ary conditions. The analysis emphasizes the important role of the
nonlinear effects in the prediction of the pull-in voltage, a key
design parameter corresponding to the switching between the on/
off states of the device. Moreover, the nonlinear analysis, ne-
glected in previous studies, shows that finite kinematics resulting
in stretching, significantly influences the pull-in voltage of doubly
clamped devices. In the case of singly clamped nanotube devices,
the finite kinematics effect is negligible but the effect of charge
concentration is quite significant. The numerical results agree with
the theoretical predictions, Eqs. (10) and (11), for the case of
singly and doubly clamped nanotubes. A correction is required to
account for tip charge concentration, as described by Eq. (10¢). In
summary, Eqs. (10) and (11) can be used with confidence in the
design of novel NEMS. Moreover, these formulas can be em-
ployed to gain insight into the effect of device geometry and ar-
chitecture.
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Flaw Tolerance in a Thin Strip
Under Tension

Recent studies on hard and tough biological materials have led to a concept called flaw
tolerance which is defined as a state of material in which pre-existing cracks do not
propagate even as the material is stretched to failure near its limiting strength. In this
process, the material around the crack fails not by crack propagation, but by uniform
rupture at the limiting strength. At the failure point, the classical singular stress field is
replaced by a uniform stress distribution with no stress concentration near the crack tip.
This concept provides an important analogy between the known phenomena and concepts
in fracture mechanics, such as notch insensitivity, fracture size effects and large scale
vielding or bridging, and new studies on failure mechanisms in nanostructures and bio-
logical systems. In this paper, we discuss the essential concept for the model problem of
an interior center crack and two symmetric edge cracks in a thin strip under tension. A
simple analysis based on the Griffith model and the Dugdale-Barenblatt model is used to
show that flaw tolerance is achieved when the dimensionless number Ay=TE/(S*H) is on
the order of 1, where 1 is the fracture energy, E is the Young’s modulus, S is the strength,
and H is the characteristic size of the material. The concept of flaw tolerance emphasizes
the capability of a material to tolerate cracklike flaws of all sizes.

[DOI: 10.1115/1.1988348]

1 Introduction

Hard and tough biological materials such as bone, teeth and
wood must be able to survive cracklike flaws of many size scales
in order to successfully perform their designated mechanical and
biological functions. The self-sensing, self-adapting, and self-
repairing capabilities of bone require not only a dynamical net-
work of blood vessels for supply of nutrient, but also constant
removal and replacement of old and damaged materials with fresh
and healthy materials. The fact that all these processes should
occur while an animal is conducting its normal activities indicates
that biological materials must be designed to tolerate cracklike
flaws of many size scales. We have found it useful to adopt flaw
tolerance as a basic principle in understanding mechanics of bio-
logical systems [1-7]. On the one hand, the concept of flaw tol-
erance can be related to the known phenomena and concepts such
as notch insensitivity, fracture size effects and large scale yielding
or bridging in fracture mechanics [8—24]; on the other hand, it can
be related to the theory of evolution which states that survivability
(in this case against mechanical flaws) is a key to propagation of
animal species. In the state of flaw tolerance, pre-existing crack-
like flaws do not propagate and do not participate in the failure
process. This view has been a central theme in our recent studies
on mechanics and mechanical properties of protein-mineral nano-
composite structures of bone and bonelike materials [1-5] as well
as mechanics of hierarchical adhesion systems of gecko [6,7]. In
these biological systems, it has been shown that, as the character-
istic size of the critical structural link is reduced to below a critical
size, a class of elastic solutions emerge with the interesting feature
of uniform stress distribution even in the vicinity of a crack. The
idea of flaw tolerance has been used to explain the nanometer
sizes of mineral crystals in bone [1-5] and of the adhesive nano-
protrusions of gecko [6,7]. In a flaw tolerant biological system,
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failure occurs not by propagation of a pre-existing crack, but by
uniform rupture at the limiting strength of the material.

For brittle materials such as various biominerals, the critical
length scale associated with flaw tolerance was found to be pro-
portional to yE/ag, [1-7], where E is the Young’s modulus, oy,
the theoretical strength of the material, and 7 the fracture surface
energy. Similar length scales with various physical interpretations
have appeared in the classical Dugdale-Barenblatt model [8,9] and
large scale yielding or bridging models applied to mechanics of
earthquake rupture [10], notch insensitivity [11,12], fracture size
effects in concrete [13—17] and in sea ice [18], and fiber bridging
in composites [19-21]. Such length scale also appeared in dy-
namic failure phenomena such as the minimum fragment sizes in
comminuting of glassy materials [22,23] and in dynamic fragmen-
tation [24]. The concept of flaw tolerance can thus be closely
related to various established phenomena and concepts in fracture
mechanics. In the present paper, we discuss flaw tolerance and its
related concepts for the simple model problem of a thin strip
under tension. The Griffith model and the Dugdale-Barenblatt
model are used to show that there exists a critical strip width
below which cracks of all sizes are tolerated. This critical size is
identified as a unique material parameter independent of the flaw
size. Below the critical size, the strip fails not by crack growth but
by uniform rupture of the material. It is interesting to compare this
concept to that of large scale yielding or bridging; in the latter
case, one compares the size of a crack with that of the yield or
bridging zone near the crack tip; if these sizes are comparable, the
fracture strength is predicted to approach the yield or limiting
strength of the material. In the concept of flaw tolerance, since it
is not the size of a flaw but the size of a material which is linked
to a critical length scale, we can introduce the following dimen-
sionless number:

Aq=TE/(S’H) (1)

where I' is the fracture energy, E is the Young’s modulus, S is the
limiting strength of the material, and H is the characteristic size of
the material or structure. We illustrate in the following that, when
the flaw tolerance number Ay is on the order of 1, the material has
the intrinsic capability to tolerate cracklike flaws of all sizes. Al-
ternatively, we can also define a critical length
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Fig. 1 Flaw tolerance in a center cracked strip under tension.
(a) The crack configuration and (b) the state of flaw tolerance.
The stress around the crack uniformly reaches the theoretical
strength of the material with no stress concentration near the
crack tip.

I'e
5
The state of flaw tolerance is achieved when the characteristic
dimension of a structure falls below this critical length.

eﬂ = (2)

2 The Basic Definition

Consider a strip of width 2H containing an interior center crack
of size 2a [Fig. 1(a)] or two symmetric edge cracks (The case of
a single edge crack is complicated by a net bending moment on
the material ahead of the crack and is not treated here.) [Fig. 2(a)]
each of length a. In the absence of cracklike flaws, the material is
assumed to fail by uniform rupture at the limiting strength S. Our
attention will be focused on whether there exists a solution in
which the normal traction outside the crack region is uniform and
equal to the limiting strength S, as depicted for the case of the
center crack in Fig. 1(b) and for the double edge crack in Fig.
2(b). The existence of such solutions would mean that the crack

117
> T
1] 1]

Fig. 2 Flaw tolerance of a double edge cracked strip under
tension. (a) The double edge crack configuration and (b) the
corresponding flaw tolerance solution.

Journal of Applied Mechanics

will not propagate even as the surrounding material uniformly
reaches the limiting strength. We introduce the following defini-
tion:

Definition: The state of flaw tolerance in a material is defined as
such that a pre-existing crack, no matter its size and orientation,
does not propagate even as the applied stress approaches the lim-
iting strength of the material. The material ahead of the crack fails
not by crack propagation, but by uniform rupture at the limiting
strength of the material.

This view has been adopted in our recent studies on mechanics
and mechanical properties of bonelike biological materials [1-5]
and hierarchical adhesion structures of the gecko [6,7]. Here we
illustrate the basic concept for the simple strip geometries shown
in Figs. 1 and 2. Considering a unit thickness in the out-of-plane
direction, if the thin strip has achieved flaw tolerance, the failure
load should be

Fy=2(H-a)$ 3)
and the strength of the flaw tolerant strip is simply

s (1-)s )

Si= H

where ¢=a/H measures the relative size of the crack and can be
generally interpreted as an effective area density of crack over the
cross-section of the strip. The above equations are analogous to
continuum damage mechanics [25] where ¢ corresponds to the
damage parameter. It has been recently established (see e.g., [16])
that simple damage mechanics descriptions like Eq. (4) is directly
applicable only for structure sizes less than a critical length scale
similar to Eq. (2) and, because of this, continuum damage me-
chanics needs to be combined with nonlocal modeling in order to
capture damage localization and size effects for sizes exceeding
the size of the fracture process zone or the nonlocal averaging
volume [16].

3 Flaw Tolerant Solution Based on the Griffith Model

In linear elastic fracture mechanics, the stress intensity factor
for the cracked strips shown in Figs. 1 and 2 can be expressed as
[26]

K= o\maF(¢) (5)

where ¢=a/H and the function F(¢) can be approximated from a
periodic crack solution [26] as

Fd) = \/%ﬁ tan 22 ©)

or by the following empirical formulas [26]:

F(¢) =(1-0.025¢ +0.06¢*) | sec 7774) center crack (7)
2
F() = (1 +0.122 cos® ﬂs) V2 an ™ double edge crack
2 T 2

(8)

These empirical formulas are accurate within 0.5% error for all
values of ¢. In the Griffith-Irwin fracture mechanics, the condi-
tion for a crack to propagate is

K2=T. )

On the other hand, the condition for existence of a flaw tolerant
solution is that a pre-existing crack, regardless of its size, does not
propagate. Therefore, in the Griffith model, the flaw tolerance
condition corresponds to
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Fig. 3 The normalized critical size for a strip of width 2H to
tolerate a crack of length 2a. The minimum value of such
curves corresponds to the critical size for the strip to tolerate
cracks of all sizes. Calculations based on (a) the Griffith model
and (b) the Dugdale model.

_ 2
4= o)

GO=¢p<1)= K; <T.

0=¢<l1
Since a flaw tolerant strip has the optimal strength Sy=(1-¢)S,
inserting o=Sy, into Eq. (5) and then into Eq. (10) yields

1
(1 -17)é(1

H<Hcr OIsndtng (d’)’ H (¢) —¢)2F2(¢)€ﬂ
(11
where H*(¢) is the critical size for the strip to tolerate a crack of
given size a=¢H and H,, is the critical size to tolerate cracks of
all sizes. Taking v=0.3, the results of H (¢)/{; based on the
Griffith model are plotted in Fig. 3(a) for both center and edge
cracks. Comparing both types of cracks, H"(¢)/{; has the mini-
mum value of about 1.87. This minimum is indicated by a hori-
zontal dashed line labeled “FT” (flaw tolerance). Any strip with
width below this line is predicted to tolerate center and edge

734 / Vol. 72, SEPTEMBER 2005

cracks of all sizes. Therefore, the critical size for flaw tolerance

based on the Griffith model is estimated to be
I'E

H.,=187€y= 1.87? (12)

Therefore, the flaw tolerance condition based on the Griffith
model is thus

H= 187€ﬂ or Aﬁ =(0.53 (13)

A similar problem has been solved previously by Carpinteri [17]
with respect to a tension collapse that precedes brittle crack propa-
gation in a strip for any relative crack lenrgth. Carpinteri [17]
defined a “brittleness number” as s=K;/ o,\h where K, denotes
the fracture toughness, o, the strength, and % the size of the strip.
Carpinteri found that if this “brittleness number” is larger than
0.54, tension collapse occurs before brittle crack propagation for
any crack length. The flaw tolerance number Ay defined in Eq. (1)
is twice the square of Carpinteri’s brittleness number; s=0.54 cor-
responds to Ay=0.58.

4 Flaw Tolerant Solution Based on the Dugdale Model

The Griffith model is a highly idealized model of brittle fracture
which neglected the details of atomic interaction laws. At the next
level of sophistication, the concept of flaw tolerance can be illus-
trated by the Dugdale-Barenblatt model [8,9] with the following

cohesive law
) S 0= 4,
770 6> 4

where o=0(6) is the normal traction, &, is the effective range of
cohesive interaction, and & the opening displacement in the plane
of the crack [Fig. 4(a)]. In the Dugdale model [8], the condition of
flaw tolerance is

(14)

dip(0=¢p<1)=<¢ (15)
where &;

ip denotes the crack-tip opening displacement. The basic
length scale for flaw tolerance can also be expressed in terms of &,
as
Ly S (16)

where we have used the relation I'=S6 in the Dugdale model.

If the flaw tolerance solution exists, there will be a uniform
distribution of normal stress S outside the crack region, regardless
of the crack size [Fig. 4(a)]. This problem is equivalent to a semi-
infinite strip subject to a uniform stress equal to S on the part of
the top surface outside the crack region, as shown in Fig. 4(b).
This stress causes a nonuniform upward normal displacement
along the top surface. The crack-tip opening displacement can be
calculated from the linear elastic problem of Fig. 4(b) as

4(1-1)SH
5 /@

(17)

where f(¢) (¢p=a/H) is a dimensionless function which cannot be
determined in closed form. An approximation by the periodic
crack solution shown in Fig. 5 is derived in the Appendix as

H(d)= f sin w(&+ ¢)/2

——dé&. (18)
The flaw tolerance condition (15) can then be written in the form

Sip=—2[u(x=a,y=0)-u(x=H,y=0)]=

sin (& ¢)/2

H<Hcr=021;ng (p), H (¢)=m€ﬂ~

Assuming v=0.3, the function H(¢)/€; based on the Dugdale

(19)
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Fig. 4 The flaw tolerance solution based on the Dugdale
model of the center cracked strip. (a) A Dugdale interaction law
is assumed in the plane of the crack. The condition of flaw
tolerance is equivalent to requiring ;, not to exceed ¢, for any
crack size a. In this case, the opening displacement in the
plane of the crack outside the crack region should lie within the
range of cohesive interaction §;. (b) The reduced elastic prob-
lem of a semi-infinite strip subjected to a uniform stress S over
the top surface outside the crack region.

model is plotted in Fig. 3(b) using the approximate solution for
f(¢#) in Eq. (18) and numerical calculations from a finite element
analysis.

(a) : —+

s s x s s
SRR LIS IR LTI L L

Fig. 5 A periodic crack problem used to derive an approxi-
mate solution for the strip cracks in Figs. 1 and 2. Symmetry
conditions along the dotted lines suggest that the periodic
crack problem can be used as an approximate solution to the
strip crack problems. In the mode Ill case, the period crack
solution becomes the exact solutions for the strip cracks. (a)
The period crack configuration and (b) the flaw tolerant
solution.

Journal of Applied Mechanics

Figure 3(b) indicates that, for both types of cracks, H (¢)/ €
has a minimum value around 0.3277=1 for a center crack with
crack size close to one half of the strip width. Strips thinner than
this critical value are predicted to tolerate center and edge cracks
of all sizes. Therefore, the Dugdale-model predicts that the critical
size for the strip to achieve flaw tolerance is

e §E
Hcrzfﬂzng. (20)
The flaw tolerance condition can thus be expressed as
H$€ﬂ or Aftzl (21)

Note that the prediction based on the Dugdale model is within a
factor of 2 of that based on the Griffith model. Equation (21) is
very convenient to use.

While the Dugdale model represents an improvement upon the
Griffith model, the cohesive law in Eq. (14) is still unrealistic and
should be regarded as a highly idealized simplification of cohesive
interactions. Despite this idealization, the Dugdale model has been
successfully used to describe molecular forces in adhesive contact
of elastic spheres [27]. More rigorous descriptions of atomic in-
teractions can be achieved by atomistic modeling without addi-
tional gain in concept.

5 Discussion

5.1 Nanoscale Flaw Tolerance in Brittle Materials. We
have used the Griffith model and the Dugdale-Barenblatt model of
a cracked thin strip as a benchmark problem to illustrate the con-
cept of flaw tolerance applied to mechanics of biological systems
[1-7]. This concept is closely related to the known phenomena
and concepts such as notch insensitivity, fracture size effects, and
large scale yielding or bridging in fracture mechanics. The focus
of flaw tolerance is on the capability of materials (such as biom-
inerals) to tolerate cracklike flaws below a critical size. In the state
of flaw tolerance, the material ahead of a crack fails not by crack
propagation, but by uniform rupture at the limiting strength of the
material. Obviously, for a cracked material, the optimal strength
corresponds to a uniform distribution of failure stress spread over
all remaining cohesive bonds. This optimal state can be reached
via size reduction. We have illustrated via both Griffith and Dug-
dale models that there exists a critical width for a strip below
which center and edge cracks of all sizes are tolerated. This criti-
cal size is a material constant independent of the flaw size.

For brittle materials, the fracture energy is twice the surface
energy (I'=21v) and the limiting strength is the theoretical strength
(S=0y). A previous estimate of critical size of flaw tolerance H,
based on a platelet containing a thumbnail crack with depth equal
to half of the plate thickness is [1]

vE 1y
H, = O'lzh =7
This result, which is similar to Egs. (12) and (20), has led to the
postulate that the nanometer size of mineral crystals in bone is
selected to ensure optimum fracture strength and maximum toler-
ance of flaws (for robustness) [1]. For biominerals, taking y
=1J/m?, E=100 GPa, and o,=E/30 leads to an estimate of €
around 18 nm and H =7€;/2 around 30 nm. The Young’s modu-
lus of various brittle materials can vary, depending on the atomic
structure and the purity of the material, in quite a wide range
between a few gigapascals to around a thousand gigapascals. For
example, the Young’s modulus of CaCO; can be as low as 50 GPa
and that of diamond can reach as high as 1200 GPa. Typical esti-
mates of the theoretical strength can range between 1%—-10% of
the Young’s modulus. If we take y=1 J/m?, E=50-1200 GPa,
and 0y,=(1%—-10%)E, the characteristic length € of flaw toler-
ance can be estimated to vary in the range

(22)
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£~ 2A - 400 nm. (23)

Therefore, the critical length of flaw tolerance can vary from near
atomic scale for materials like diamond to a few hundred nanom-
eters for biominerals. Recent studies on mechanical strength of
single wall carbon nanotubes and SiC and beta-Si;N, nanowhis-
kers (see [28] and references therein) seem to show that nanode-
fects in these nearly perfect nanostructures can strongly affect
their strength. This may be understood from the point of view that
the characteristic length of flaw tolerance for these materials is on
the atomic scale with practically vanishing range of flaw tolerance
so that the resulting nanostructures remain sensitive to the pres-
ence of nanodefects. For biological materials, the inorganic com-
ponents in bone, teeth and sea shells have significantly lower
Young’s modulus and hence can become insensitive to cracklike
flaws at relatively larger size scales (a few to a few hundred na-
nometers). In other words, materials with nearly perfect atomic
structures and high Young’s modulus may remain sensitive to
cracklike flaws even down to atomic scales while materials with
lower Young’s modulus and less perfect lattice structures or less
pure chemical constituents are likely to have saturated their lim-
iting strength at tens or hundreds of nanometers size scales.

5.2 Flaw Tolerance in Hierarchical Materials. The concept
of flaw tolerance suggests that sufficiently small bodies tolerate
cracklike flaws. Although it is difficult to devise a rigorous math-
ematical proof for arbitrary crack and specimen geometries, a
simple argument based on dimensional analysis would show that
the basic concept is in fact general. Consider a small scale mate-
rial containing a variety of cracklike flaws. For cracks with sizes
smaller than the overall dimension of the material, the dominant
length is the crack size a. On the other hand, for those flaws with
size approaching the material dimension H, the dominant length
becomes H-a. Therefore, the “largest flaw in the material” will be
around half the material dimension, a fact which can also be noted
from Fig. 3. Application of Griffith fracture criterion would show
that the fracture strength is

of <« \T'E/H. (24)

Comparing this prediction to the limiting strength S immediately
shows that the largest flaw in the material will be tolerated as soon
as the material is reduced to a critical size on the order of €y
=TE/S? defined in Eq. (2). The growth of all flaws will be sup-
pressed once the largest flaw is tolerated. This viewpoint was
implicitly adopted in [1] when estimating the critical length of
flaw tolerance for mineral platelets in bone.

The concept of flaw tolerance implies that the conventional
engineering concept of stress concentration near flaws becomes
invalid when the characteristic dimension of a material or a struc-
ture is reduced to below a critical length. When this occurs, the
concept of flaws can assume a totally different meaning from that
used in conventional engineering. This has been shown to have
special meaning for the inorganic components in bone [1-5] and
the adhesive protrusions in gecko [6,7]. How can the concept of
flaw tolerance be used to design materials with flaw tolerance
property at macroscopic scales? In biological materials or sys-
tems, we believe that the size limit of flaw tolerance is increased
via hierarchical structure design; for example, bone has seven
levels of structural hierarchies [29]. Another fact known to civil
engineers is that a mesh of steel bars can be embedded in concrete
to push the size effects to larger structures [16]. In metals, the
plastic yield strength itself exhibit strong size-dependence (e.g.,
[30]) near micrometer length scales. In cases involving fiber-
reinforced or other forms of composites, the limiting strength of
the composite will depend on how the length scale of interest
compares with the characteristic size of individual fibers or other
reinforcing elements. It will be of particular interest to develop
nanoengineered hierarchical materials with flaw tolerance prop-
erty at all hierarchical levels, all the way up to macroscopic length
scales. The essence of flaw tolerance in hierarchical materials is to
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render the dimensionless number Ag=TE/(S*H) independent of
H via hierarchical design. This may be achieved by one or more
of the following strategies as H increases: (a) increase I'; (b)
increase E; (c) decrease S. As the size of metallic materials in-
crease, inelastic deformation mechanisms such as dislocations and
creep tend to become more active while yield strength tends to
decrease, somewhat corresponding to strategies (a) and (c). In
certain cases, these strategies can be realized by designing with
nonhomogeneous or graded materials. Biological materials may
provide more hints on how to design flaw tolerant hierarchical
materials for macroscopic applications. The study of how biologi-
cal systems survive cracklike flaws should be of interest not only
to the mechanics community but also to a variety of other disci-
plines including materials science, biology, biological materials,
evolution, nanotechnology, and biotechnology.
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Appendix: An Approximate Solution for the Dugdale
Model of Flaw Tolerance in a Cracked Strip

The nondimensional function f(¢) in Eq. (17) cannot be deter-
mined in closed form. An approximate solution can be obtained
based on the periodic crack problem depicted in Fig. 5(a). Accord-
ing to the theory of elasticity [31], the normal displacement along
the surface of a plane-strain half space subjected to an arbitrary
distribution of normal traction p(£) can be expressed as

uy(x) 2(1 Vz)f
E-x

o (A1)

When the traction distribution is periodic with period 2H, Eq.
(A1) can be simplified as

) (1= m(g—x)
_;x___ EH (g)t o d6 (A2

0

For the piecewise uniform distribution of normal traction shown
in Fig. 5(b), Eq. (A2) can be integrated as

duy(x)  2(1 - ?)S | sin(m(x + a)/2H)
o 7E 1 sin(7(x — a)/2H)

In the Dugdale model of the periodic crack, the crack-tip opening
displacement can be calculated from Eq. (A3) as

(A3)

B a&uv(x) _4(1—V2)SH (£>
a}ip_zL 2 Sdv=———f| = (A4)
where
sin w(é+ ¢)/2
——d¢&. A5
f(P)= f in (- B2 ¢ (AS)

Symmetry considerations will show that this result can be used as
an approximate solution to the strip crack problems shown in
Figs. 1 and 2. If the plane strain modulus (1-1?)/E is replaced by
(1+v)/E, the solution of Egs. (A4) and (A5) also applies to the
periodic crack under mode III antiplane loading. In the mode III
case, Eq. (A4) with (1-1%)/E replaced by (1+v)/E is also the
exact solution for the strip crack problems depicted in
Figs. 1 and 2.
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1 Introduction

Nanoindentation has evolved into a valuable means of deter-
mining the mechanical properties of thin films and surfaces in
nanometer regimes [1-4]. In conventional hardness tests, “hard-
ness” is defined as the maximum load divided by the area of the
residual impression. The prevailing definition of “nanohardness”
during nanoindentation is the maximum load divided by the con-
tact area at that load, which is calculated from an analysis of the
load-depth curve based on Hertzian continuum mechanics contact
theory.

Computer simulation has attracted an increasing interest in re-
cent years as a means of gaining valuable insights into the atomic
processes associated with the nanoindentation cycle. Perez et al.
[5] employed total-energy pseudopotential calculations to study
the plastic behavior which occurs during nanoindentation, and
concluded that these plastic deformations are activated by charge
delocalizations. Zimmerman et al. [6] conducted atomistic simu-
lations to clarify the surface step effects on nanoindentation. Their
results indicated that the yielding load decreases when indentation
takes place in the vicinity of a surface step. Fuente et al. [7]
studied nanoindentation using scanning tunneling microscopy and
atomistic simulations, which successfully reproduced the disloca-
tion loops observed experimentally. Knap et al. [8] addressed the
effects of the indenter radius size on the nanoindentation of Au
(001), and demonstrated that the indenter force is an unreliable
indicator of the onset of dislocation for indenter sizes in the ex-
perimental range.

In the main, these studies adopted a Molecular Dynamics (MD)
approach to investigate the dislocation activities induced by the
incipient plasticity of single perfect crystals during nanoindenta-
tion. However, MD simulation is very time-consuming with re-
spect to static atomistic simulations since it involves time resolu-
tions of a picosecond or less. Furthermore, nanoindentation
experiments are performed under quasistatic conditions in order to
avoid dynamic effects such as heating and creep and to provide a
clearer view of the deformation mechanisms of the substrate.
However, MD simulation of quasistatic conditions incurs signifi-
cant computational costs.

"To whom correspondence should be addressed.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED MECHANICS.
Manuscript received by the Applied Mechanics Division December 30, 2004; final
revision January 19, 2005. Associate Editor: Z. Suo. Discussion on the paper should
be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechan-
ics, Department of Mechanical and Environmental Engineering, University of
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.

738 / Vol. 72, SEPTEMBER 2005

Copyright © 2005 by ASME

the thin film are caused by instabilities of the crystalline structure, and that the commonly
used procedure for estimating the contact area in nanoindentation testing is invalid when
the indentation size falls in the nanometer regime. [DOI: 10.1115/1.1988349]

Hence, this present study utilizes an alternative approach which
resembles FEM methodology and is referred to hereafter as the
modified FEM approach [9,10]. Traditionally, FEM is formulated
basing on the constitutive law, i.e., the stress-strain relation. In
contrast, the modified FEM is formulated from the basis of the
interatomic potential. And it uses the concept of the energy mini-
mization scheme [6,7] using second derivatives such as the
Newton-Raphson method. Since atoms oscillate thermodynami-
cally around their minimum-energy positions, the proposed ap-
proach simply calculates the incremental changes in the
minimum-energy positions during the indentation process. In this
way, the indentation process becomes quasistatic, thereby reduc-
ing the computational task. This study employs the modified FEM
approach to simulate elastic-plastic deformations in a copper sub-
strate during a complete nanoindentation cycle. Furthermore, the
relative influences of indenter geometry and indentation depth
upon the nanohardness are explored and discussed.

2  Methodology

2.1 Atomistic Model. As shown in Figs. 1(a) and 1(b), the
simulated system configurations include a perfect three-
dimensional crystalline slab of copper atoms with a (001) surface,
and two indenters of different geometries The first indenter is in
the form of a sphere whose outer surface atoms form many facets
due to a crystalline structure. Meanwhile, the second indenter has
a triangular pyramidal form. In the simulation, it is assumed that
the hardness of the indenter’s diamond tip far exceeds that of the
thin copper film, and hence indenter deformation may be ne-
glected during the indentation process. The simulation assumes
boundary conditions in which the atoms located at the four sides
and base of the simulated film are fully constrained. The inter-
atomic potential of the copper substrate is modeled using the
Sutton-Chen potential [11], which has the same functional form as
an EAM potential, i.e.,

U=20; (1)

Ui=%2 ¢(rij)+F(pi)=3(lz (i> _C\E) (2)

J#i 255\

where p; is an electron densitylike term for atom i, which is de-
fined as

Pi=2f(rij)=2(£> (3)

j#i j#i Mij

where r;; is the distance between atoms i and j. The copper con-
stants e(eV), a(A), ¢, m, and n have values of 1.238 X 1072, 3.6,
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Fig. 1 Atomistic model used in nanoindentation simulations
(Units: angstrom)

39.432, 6, and 9, respectively. The potential between the carbon
and copper atoms is simulated using the Born-Mayer potential
[12], which produces an impulsive force only. This potential has
the following form:

‘f’(rij) =Aexp[- Za(rij -] “4)

where r;; is the distance between carbon atom 7 and copper atom
J» and the carbon/copper constants A(eV), a(1/A), and ry(A) have

values of 0.3579, 0.9545, and 2.5, respectively.

2.2 Finite Element Formulation. In this procedure, atoms
are regarded as nodes, and their potentials are considered to be
elements. It is assumed that atom i is located at position (x;,y;,Z;)
with displacements u;, v;, and w; in the x-, y-, and z-directions,
respectively. By defining the nodal displacement vector for the i
atom as {u}; and the corresponding external nodal force vector as
{F};=(f:,g:,h;)T, the total potential energy for atom i can be ex-
pressed as

1
E=5 2 d) +F( Zon) | -Wie 0
J#i J#i
where the atomic distance r;; is given by

rp={Gi+ ;= x)* + (i +vi—y) + (G +wi—2)M” (6)

Journal of Applied Mechanics

The differential of the atomic distance with respect to {u}; can
be expressed as

1
dr;= :[xi F U= X5+ 0= Y52+ wi = zld{ub; = [Bld{u};
ij
(M
The principle of minimum work enforces the minimization of
the total energy of the whole system (E ., =2;E;) with respect to
{u}; such that

Py _ [@_fﬁa_fﬂ
Hu}; % Ldp;dry  dp;dry  dry;

Equation (8) expresses the equilibrium equation at atom i,
which represents the equilibrium of the forces acting on atoms i.
The unbalance force, {&};, can then be defined as

S| EY I gy
{g}i-z [apiari,.+ap, arij+ari,] {Fh ©)

]_{F}i={0}~ (8)

In order to solve this nonlinear equilibrium equation in an effi-
cient iterative way, it is necessary to differentiate {£}; with respect
to {u};, i.e.,

diei= {Q(E fﬁ)(i E[B—]T> +2 {(£+ ﬁ)

i \ i 9Pi 7ij ) \Gi 9Py Tig ) i (NP Op;
Ff 1 of 1 of )
x[(—z——— [BUBY +—=(1| 1+ 2 || =~
ory Ty dri ij Tij i L\ 9

1 d¢p 1 d¢
- ——>[B][B]T+ ——[1]] }d{u},- =[Kyld{u};  (10)
rij Ory; Tij Tij

Subsequently, the conventional finite element formulation as-
sembly procedure can be employed to assemble Eq. (8) in order to
obtain the total system equation, i.e.,

d{& =[Krld{u} (11)

Similarly, Eq. (7) can be assembled to obtain the equilibrium
equation of the total system, i.e.,

2 gi = {f}imemal - {F}extemal = {0} (12)

In terms of the finite element formulation, Eq. (11) represents
the tangent stiffness equation, while the terms {f}ipema and
{F} stermar in Eq. (12) denote the internal force vector and the ex-
ternal force vector, respectively.

The present simulation adopts the Newton-Raphson iterative
technique to solve Eq. (12) via the following displacement control
scheme. First, it is assumed that the external force vector {F}
retains a specified form during the iteration process, i.e.,

{FY = {F}~" +N{F),

i=1,2, ... (13)

where {F} is the reference load vector.
If Eq. (13) is substituted into Eq. (11), the iterative tangent
stiffness equation becomes

[K)d{u} = \N{F} + d{&¥, i=1,2, ... (14)

The iterative displacement increment can be written in a similar
form, i.e.,

du = N{ul +d{ull, i=1,2, ... (15)

where

(K7l = {F}

. Loi=12, ... (16)
[Krld{u}, = a{&}
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The displacement control scheme is so called because the gth
component of the incremental displacement vector is maintained
as a constant during the iteration process, i.e.,

i i g
Nuy, +duy,, =du,

) duq,izl
du;= )
0,i>1

The modified FEM approach yields the complete nanoindenta-
tion equilibrium path. Once the equilibrium position of each atom
has been determined, the stress tensor at the atomic site can be
determined [13], i.e.,

(17)

N
. 1 -
O =i 2 i1 (18)
j#i
where i refers to the atom in question, j refers to the neighboring
atom, r7/ is the displacement vector from atom i to atom j, N is the
number of nearest neighboring atoms, and V' is the volume of the
atom in question.
Slip vector analysis [6] is utilized to observe the dislocation
activity. The slip vector is given by

n\'
=~ (=) (19)
nS /
where j is one of the nearest neighbors of the atom in question, n,
is the number of neighboring atoms which have slipped, and r{
and r’(;, are the vector differences of atom j and the atom in ques-
tion at indentation displacement steps ¢ and 6, respectively.

3 Results and Discussion

Figure 2(a) presents the variation in load (i.e., force experi-
enced by the indenter) with indentation depth for spherical in-
denter nanoindentation cycles performed to maximum indentation
depths of 4 A, 7 A, and 10 A. Meanwhile, Fig. 2(b) shows the
equivalent load-depth curves for pyramidal indenter nanoindenta-
tion cycles. It is clear that each of the indentation cycles in Fig. 2
represents a hysteretic loop, which indicates that plastic deforma-
tions take place during the loading process. In the present study,
the stability of a crystalline structure is correlated to, and can be
monitored by, the positiveness of the modified FEM tangent stiff-
ness matrix. The irreversible plastic deformations observed in the
simulation can be attributed to changes of the crystalline structure
caused by instabilities induced by high localized stress. This per-
spective of the plastic deformation mechanism bears witness in
the work of Li et al., [14], but the precise prediction of the onset
of incipient plasticity falls beyond the scope of the present study.
Figure 2 reveals that compared to pyramidal indentation, spherical
indentation leads to an enhanced yielding phenomenon, which
resembles that observed in the uniaxial compression testing of
ductile metals. Comparing the hysteresis loops of Figs. 2(a) and
2(b), it is clear that the enclosed areas are greater in the case of
spherical indenter indentation. This indicates that more plastic
work is dissipated in indentation cycles performed with this par-
ticular indenter geometry.

Figure 3 provides a schematic illustration of the elastic-plastic
deformation mechanism observed during the present simulations.
It can be seen that irreversible plastic deformation occurs as a
result of slips in which the crystal lattice retains its shape and
orientation. In addition to plastic deformation, the change in size
and distortion of the crystal lattice also induces elastic deforma-
tion.

Figure 4 presents the atomic configurations of the copper crys-
tals at the maximum indentation depth following unloading for the
two indenters of different geometries. For clarity of observation,
the atomic configurations shown in this figure correspond to the
atomic arrangements of the single (1 0 0) atomic layer located
immediately beneath the two indenter tips. Equation (19) can be
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Fig. 2 Load-depth curves for maximum indentation depths of

4 A, 7 A, and 10 A: (a) spherical indenter, and (b) pyramidal
indenter

used to calculate the slip vector at each atomic site. The majority
of the atoms do not slip. These atoms are shaded a dark blue color
in the figure. The atoms with nonzero slip vectors are shaded with
different colors. By comparing subplots (a) and (b), it can be seen
that the elastic dilatation and distortion of the crystal lattice are
recovered and that a few more atoms have slipped following un-
loading. Furthermore, comparing subplots (c) and (d) shows that
the elastic deformation is recovered and that some atoms with
small slip vectors are also recovered. Therefore, atoms with small
slip vectors are induced by elastic distortion of the crystal lattice.

The high stresses induced as the indenter impresses the sub-
strate cause structural instability of the crystal, which causes some

elostoplastic

deformation /

elastic deformation

plastic
deformatian

Fig. 3 Representation of elasto-plastic deformation mecha-
nism observed in the simulations
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Fig. 4 Atomic configurations of copper crystal at maximum indentation
depth following unloading for two indenters of different geometry. Note that
(a) and (b) represent the cross sections through the indenter tip and parallel
with the (1 0 0) plane for the pyramidal indenter, while (¢) and (d) present the
equivalent cases for the spherical indenter.

(b)

(d)

Fig. 5 von Mises shear stress and slip vector distributions for indentation
to a depth of 4 A using a spherical indenter. (a)—(b) Distributions of von
Mises shear stress viewed in the [111] and [001] directions, respectively.
(c)-(d) Distributions of the norm of the slip vector viewed in the [111] and
[001] directions, respectively.
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(b

Fig. 6 Flooded contour diagrams of contact pressure distributions on the
copper surface. (a) Spherical indenter; (b) pyramidal indenter. The two bold
contour lines represent the boundaries of the contact areas where contact
pressure vanishes. (Stress units: GPa.)

of the atoms to slip. Therefore, a correlation must exist between
the stresses at the atomic sites and the atom slippage. Using Eq.
(18), the stress tensor is calculated at each atomic site of the
copper crystal for indentation to a depth of 4 A using the spherical
indenter. Figures 5(a) and 5(b) show the distributions of von
Mises shear stress exceeding 4.5 GPa in the [111], [001] direc-
tions, respectively. Meanwhile, Figs. 5(c) and 5(d) present the
distributions of the norm of the slip vector in the [111], [001]
directions, respectively. A comparison of the subplots in the upper
and lower rows of Fig. 5 indicates that the von Mises shear stress
is a qualitatively good indicator of the plastic deformation induced
in the simulated nanoindentation.

The principal goal of nanoindentation testing is to determine
the elastic modulus and nanohardness of the specimen material
from experimental measurements of indenter load and penetration
depth. These readings provide an indirect measure of the contact
area at full load, from which the mean contact pressure, and hence
the hardness, may then be estimated. Therefore, the validity of the
nanohardness and elastic modulus results depends largely upon
the analytical procedure employed to process the raw data. The
present simulations utilize the contact pressure to identify the true
contact area at full load. Figures 6(a) and 6(b) present flooded
contour diagrams of the contact pressure distributions on the cop-
per surface for spherical and pyramidal indentations, respectively.
The bold contour lines represent the boundaries of the contact
areas at which the contact pressure vanishes. Once the true contact
area has been determined, the nanohardness can be computed by
dividing the load by the projected area of contact at that load.
Table 1 presents the nanohardness magnitudes calculated using
this method for spherical and pyramidal indentations with maxi-
mum indentation depths of 4 A, 7 A, and 10 A.

In nanoindentation tests, analysis of the load-depth curve based
on continuum mechanics contact theory gives an indirect measure
of the contact area. The contact depth (h,) is estimated from the
total indentation depth (h,) via

Table 1 Nanohardness values calculated using two methods
for two different indenter geometries and three indentation
depths.

Nanohardness calculated Nanohardness

) using the true calculated
Geometry of ~ Indentation contact area using Eq. (20)

indenter depth 7, (A) (GPa) (GPa)
pyramidal 4 5.1 15.7
pyramidal 7 4.9 11.8
pyramidal 10 4.7 9.5
spherical 4 7.6 8.1
spherical 7 6.2 73
spherical 10 6.3 7.8
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hc = ht - SPmax/Smax (20)

where £=0.72 for the pyramidal indenter, £=0.75 for the spheri-
cal indenter, and S,,,, is the stiffness, which is equal to the slope
of the unloading curve (dp/dh) at the maximum load (P,y)-

The projected contact area is obtained by the projected contact
area-to-contact depth relationship for the indenter geometry. The
nanohardness is then determined by dividing the maximum load
by the projected contact area. Table 1 presents the results when
this procedure is applied to the simulated load-depth curves to
determine the corresponding nanohardness values.

Table 1 shows that the nanohardness values calculated using
Eq. (20) are far higher than those calculated using the true contact
area identified by the contact pressure. Hence, Eq. (20) signifi-
cantly underestimates the contact depth in all of the simulation
cases. The results also reveal that the nanohardness varies with the
indentation depth and the indenter geometry. Therefore, it can be
concluded that the indentation size effect is significant in the
nanoscale indentations simulated in this present study.

It can also be seen that the nanohardness obtained using the
pyramidal indenter is higher than that obtained using the spherical
indenter when the contact area is measured via the contact pres-
sure. In contrast, if the contact area is obtained from Eq. (20), the
pyramidal indenter indentation yields a higher nanohardness. Fig-
ure 2 has demonstrated that the spherical indenter indentation con-
sumes greater plastic work. This observation is consistent with the
result that the nanohardness calculated by direct measurement of
the contact area is higher. Therefore, it can be concluded that the
commonly used procedure for estimating the contact area in
nanoindentation testing is invalid when the indentation size falls
in the nanometer regime. The reason why Eq. (20) underestimates
the real contact area of nanoscale indentation depth is that the
assumption implied by Eq. (20) fails significantly. In other words,
the deformation behavior at the incipient unloading is elastic-
plastic instead of purely elastic behavior implied by Eq. (20).

4 Conclusion

In conclusion, this paper has presented a more efficient ap-
proach than conventional MD simulation for the investigation of
the elastic-plastic deformations which occur during nanoscale in-
dentations of a thin film. The proposed approach utilizes the mini-
mum energy principle via nonlinear finite element formulation to
reduce the indentation process to a quasistatic problem. The simu-
lation results of the current modified finite element formulation
indicate that the microscopic plastic deformations of the thin film
are caused by instabilities of the crystalline structure. It has been
shown that the analytical procedure commonly adopted in nanoin-
dentation testing significantly overestimates the nanohardness.
The simulation results have confirmed that both the indentation
depth and the indenter geometry influence the nanohardness
results.

Transactions of the ASME



Acknowledgment

The authors gratefully acknowledge the financial support pro-
vided to this study by the National Science Council of Taiwan,
under Grant No. NSC 91-2218-E-274-001, and American AFOSR,
under Contract No. F62562-03-P-0378.

References

[1] Lucas, B. N., Oliver, W. C., and Swindeman, J. E., 1998, “The Dynamics of
Frequency-Specific, Depth-Sensing Indentation Test,” Mater. Res. Soc. Symp.
Proc., 522, pp. 3-14.

[2] Hay, J. C., and Pharr, G. M., 1998, “Experiment Investigation of the Sneddon
Solution and an Improved Solution for the Analysis of Nanoindentation Data,”
Mater. Res. Soc. Symp. Proc., 522, pp. 39-44.

[3] Hay, J. L., O’'Hern, M. E., and Oliver, W. C., 1998, “The Importance of
Contact Radius for Substrate-Independent Property Measurement of Thin
Film,” Mater. Res. Soc. Symp. Proc., 522, pp. 27-32.

[4] Lu, W., and Komvopoulos, K., 2001, “Nanotribological and Nanomechanical
Properties of Ultrathin Amorphous Carbon Films Synthesized by Radio Fre-
quency Sputtering,” J. Tribol., 123, pp. 641-650.

[5] Perez, R., Payne, M. C., and Simpson, A. D., 1995, “First Principles Simula-
tions of Silicon Nanoindentation,” Phys. Rev. Lett., 75, pp. 4748—-4751.

[6] Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., and Foiles, S.
M., 2001, “Surface Step Effects on Nanoindentation,” Phys. Rev. Lett., 87, p.

Journal of Applied Mechanics

165507.

[7] Fuente, O. R. de la, Zimmerman, J. A., Gonzalez, M. A., Figuera, J. de la,
Hamilton, J. C., Pai, W. W., and Rojo, J. M., 2002, “Dislocation Emission
around Nanoindentations on a (001) fcc Metal Surface Studied by Scanning
Tunneling Microscopy and Atomistic Simulations,” Phys. Rev. Lett., 88, p.
036101.

[8] Knap, J., and Ortiz, M., 2003, “Effect of Indenter-Radius Size on Au(001)
Nanoindentation,” Phys. Rev. Lett., 90, p. 226102.

[9] Jeng, Y. R., and Tan, C. M., 2002, “Computer Simulation of Tension Experi-
ments of a Thin Film Using an Atomic Model,” Phys. Rev. B, 65, p. 174107.

[10] Jeng, Y. R., and Tan, C. M., 2004, “Theoretical Study of Dislocation Emission
around a Nanoindentation Using a Static Atomistic Model,” Phys. Rev. B, 69,
p. 104109.

[11] Rafii-Tabar, H., 2000, “Modelling the Nano-Scale Phenomena in Condensed
Matter Physics via Computer-Based Numerical Simulations,” Phys. Rep., 325,
pp. 239-310.

[12] Inamura, T., Suzuki, H., and Takezawa, N., 1991, “Cutting Experiments in a
Computer Using Atomic Models of a Copper Crystal and a Diamond Tool,”
Int. J. Jpn. Soc. Precis. Eng., 25, pp. 259-266.

[13] Alber, 1., Bassani, J. L., Khantha, M., Vitek, V., and Wang, G. J., 1992, “Grain
Boundaries as Heterorgeneous Systems: Atomic and Continuum Elastic Prop-
erties,” Philos. Trans. R. Soc. London, Ser. A, 339, pp. 555-586.

[14] Li, J., Vliet, K. J. V., Zhu, T., Yip, S., Suresh, S., 2002, “Atomistic Mecha-
nisms Governing Elastic Limit and Incipient Plasticity in Crystals,” Nature
(London), 418, pp. 307-310.

SEPTEMBER 2005, Vol. 72 / 743



An Acoustic Model for Wave
Propagation in a Weak Layer

Michael EI-Raheb
ATK Mission Research,

23052 Alcade Drive,

Laguna Hills, CA 92653

An acoustic model is developed for transient wave propagation in a weak layer excited by
prescribed pressure or prescribed acceleration at the boundary. The validity of the acous-
tic model is investigated for the two excitations. A comparison of transient response from
the acoustic model and a 3D axisymmetric elastic model reveals that for prescribed
acceleration the acoustic model fails to capture important features of the elastic model

even as Poisson ratio v approaches 1/2. However for prescribed pressure, the two
models agree since shear stress is reduced. For prescribed acceleration adopting the
modal approach, the mixed boundary-value problem on the excited boundary is con-
verted to a pure traction problem utilizing the influence method. To validate the elaborate
modal approach a finite difference model is also developed. [DOI: 10.1115/1.1988367]

1 Introduction

Laboratory simulation of blunt trauma in living tissue relies on
measuring propagation of stress waves from low velocity impact
in a weak viscoelastic material such as ordnance gelatin. It has
acoustic impedance close to that of water yet living tissue dissi-
pates energy from viscoelasticity and possesses shear rigidity con-
trolling transverse propagation. It has been widely assumed that
gelatin is similar to water because it has approximately the same
density and bulk speed of sound. In a weak solidlike gelatin, ef-
fects of the free surface and lateral propagation of a forcing pulse
are controlled by shear modulus G and the speed of shear waves,
respectively. These types of propagation are independent of a loss
mechanism like viscoelasticity. Loss produces an attenuation of
the pulse over and above that from dispersion. It reduces the par-
ticipation of high frequency modes by smoothing the average re-
sponse and its gradients.

In a fluid like water, propagation is mostly volumetric, with
shear related to dissipation that is proportional to velocity gradient
and kinematic viscosity. At the free surface a different kind of
wave develops controlled by gravity and depth of the fluid. It can
be argued that although water and gelatin have very similar acous-
tic impedances, shear rigidity of gelatin may control how a stress
wave propagates laterally and its character at and close to the free
surface. If gelatin is like water then it can be treated as an acoustic
fluid governed by the wave equation. In this work the wave equa-
tion is derived as a limiting case of the linear elastodynamic equa-
tions of a homogeneous solid. In fact when Poisson ratio assumes
the value of 1/2, the elastic field converts to the acoustic field.
One issue addressed in this work is the sensitivity of the solution
to Poisson ratio close to 1/2.

To measure transmission of stress waves produced by low ve-
locity impact on gelatin, a layer is bonded onto a metallic sub-
strate instrumented by sensitive carbon gauges. Upon impact,
stress waves propagate across the layer reaching the substrate with
substantial reduction in intensity from dispersion and viscous
losses. Measuring impact and transmitted pressures are needed to
construct the material’s constitutive model. Carefully controlled
experiments with sufficient accuracy reproducing transient histo-
ries for correlation with computed results are very hard to execute.
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The problem lies in the weakness of the material. Gauges cannot
be placed inside the material while gauges at the interface be-
tween material and metal substrate suffer from lack of cohesion
adding uncertainty to measured data. This difficulty forces inves-
tigators to rely on sensitivity studies from analysis and general
purpose discretization programs in order to understand phenom-
ena. Moreover, literature in this field addresses quasistatic mea-
surements of elongation omitting important dynamic effects such
as strain-rate dependence in the microsecond regime. The simula-
tion of these experiments led to the realization that approximating
gelatin as a viscous fluid is valid only for unrealistic impact con-
ditions when pressure over the footprint is uniform.

Acoustic wave propagation governed by the Helmholtz equa-
tion has been treated extensively in the literature. Solution tech-
niques range from the analytical for simple geometries to numeri-
cal for problems with complicated geometry, medium
inhomogeneity, and nonlinearity. Theil [1] treats the 1D viscoelas-
tically damped wave equation analytically. Yserentant [2] shows
how a consistent discretization of the acoustic equation can be
recovered from the particle model of compressible fluids (see Ref.
[3]). Sina and Khashayar [4] solve the 3D wave equation analyti-
cally for arbitrary nonhomogeneous media adopting the differen-
tial transfer matrix. Sujith et al. [5] present an exact solution to 1D
transient waves in curvilinear coordinates adopting transformation
of variables suggested by the WKB approximation. Hamdi et al.
[6] present exact solitary wave solutions of the 1D wave propa-
gation in nonlinear media with dispersion. Yang [7] solves nu-
merically the wave equation with attenuation from linear friction
utilizing grid modification to track wave fronts accurately.
Narayan [8] solves the 3D transient acoustics in inhomogeneous
media by finite difference and Schemann and Bornemann [9] ap-
ply the adaptive Rothe integrator. Bailly and Juve [10] present a
numerical solution to the 2D acoustic propagation from transient
sources using the dispersion-relation-preserving scheme in space
and a fourth-order Runge-Kutta in time. Wagner et al. [11] and
Gaul and Wenzel [12] use a hybrid boundary element method for
frequency and transient acoustic response in bounded and un-
bounded regions. Mehdizadeh and Paraschivoiu [13] develop a
spectral element method to solve the 3D Helmholtz equation re-
taining accuracy for large wave numbers. None of the references
above addresses 3D transient propagation from impact analyti-
cally.

Acoustic wave propagation in a free disk is developed here
adopting a modal analysis validated by a finite difference method.
Transient response to prescribed pressure and prescribed accelera-
tion at the boundary is analyzed. Since the primary goal of this
work is to investigate the validity of the established belief that
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tissue can be treated as a fluid, the acoustic equation is derived
from the elastic equations of a solid in the limit when Poisson
ratio and shear stresses vanish (Appendix).

Section 2 develops the acoustic model utilizing the modal ap-
proach for both prescribed pressure and prescribed acceleration.
In the modal approach, the forcing function at the boundary is
treated adopting the static-dynamic superposition method (see
Berry and Naghdi [14]). The solution is expressed as a superpo-
sition of a static term satisfying the inhomogeneous boundary
conditions, and a dynamic solution in terms of the eigenfunctions
satisfying homogeneous boundary conditions.

Since the projectile’s strength and acoustic impedance are much
greater than those of tissue, the excitation transmitted over the
boundary at the projectile-tissue interface can be approximated as
a given time dependent prescribed motion in contrast to an un-
known pressure excitation. However, this type of excitation would
lead to a mixed boundary condition; i.e., pressure gradient pre-
scribed over part of the boundary and zero pressure prescribed
over the remaining part. This difficulty can be overcome by the
influence method which superimposes response from a set of unit
pressures with time-dependent weights prescribed on annular por-
tions of the footprint. These weights are updated at each time step
from the condition that combined acceleration at the center of
each ring over the footprint equals the prescribed instantaneous
acceleration. In this way, the forcing function is converted to pure
traction with time-varying spatial dependence.

Section 3 develops the finite difference approach. Radial and
axial dependence are discretized by central differences while time
dependence is integrated by the Kutta-Runge method.

Section 4 compares acoustic histories from the two approaches
validating the modal approach. Histories of the acoustic model are
compared to those from a 3D axisymmetric elastic model demon-
strating the inadequacy of the acoustic model when applied to a
solid with Poisson ratio near 1/2 and forced by applied accelera-
tion. Sensitivity of the acoustic histories to type of excitation and
to parameters of the prescribed acceleration profile is also pre-
sented. The effect of Poisson ratio v on peak elastic stress is
evaluated confirming that for prescribed acceleration mismatch of
acoustic and elastic results is not caused by small deviations in
Poisson ratio v from 1/2 in the elastic model. Finally, results from
the two models are compared for prescribed uniform pressure re-
vealing that the mismatch diminishes when shear stress is re-
duced.

2 Modal Analysis

In the analysis to follow, all variables are independent of cir-
cumferential angle due to the assumption of axisymmetry. This
condition applies for a cylindrical projectile at normal incidence.
Consider a traction-free disk with radius r; and length / bonded to
a rigid substrate. Appendix A derives the acoustic equation in the
limit when shear stress vanishes in the linear elastodynamic equa-
tions of a solid. In the analysis to follow, r and z denote radial and
axial coordinates. Acoustic propagation in the disk is governed by
the acoustic equation

(O + 1rd,+ 0.)py— 1ctdupa=0 (1a)
with the following boundary conditions:
plraz:0)=0 (1b)

p(r,050) =[H(r) = H(r — r,)1f(r) prescribed pressure

(91]7(7',0;1‘) == pfw(l) O=rs= r[’

(r.0:0)=0 prescribed acceleration
p(r,051) =

rp<r<rd

(1e)

a.p(r,h;t) =0, fixed face, or alternatively
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p(r,h;t) =0, free face (1d)

where H(r) is the Heaviside function, r, is footprint radius of the
external excitation which is projectile radius, f(7) is time depen-

dence of prescribed pressure, and fw(t) is time dependence of
prescribed acceleration. Express p(r,z;t) as a superposition of
two terms (see Berry and Naghdi [14])

ps(r,2)f(0) + py(r,z:1),
—p(r.2)pf. (1) + py(r,z;1), prescribed acceleration
2)

where p(r,z) is the static solution of Eq. (la) with inhomoge-

prescribed pressure
p(r.z;0) =

neous boundary conditions (1b)—(1d) assuming f(1)=1 or f,,()
=1/p, and p,(r,z;1) is a dynamic solution of Eq. (la) satisfying
the homogeneous boundary conditions (1b)—(1d) with f(r)=0 or
bi w(t) =0.

The prescribed acceleration boundary condition in Eq. (I¢) is
mixed. In other words, part of the boundary has prescribed pres-
sure gradient and the other part has prescribed pressure. This dif-
ficulty can be overcome by dividing the circle bounding the foot-
print into n+1 equidistant radial stations with increment Ar,

0,71,79 oo sFyois Ty T =Ty = Ar,, = const

where r,=r,. Assume a uniform pressure of unit intensity acting
over each annular segment ry_;—r; that is termed source seg-
ment. Where subscript z denotes partial derivative with respect to
z, evaluating the pressure gradient P, (r,z;1) from the kth source
segment at the center of the /th segment r;=(r;+r._;)/2 that is
termed target point and following the expansion in (2) yields

P ylre,050) = = pog ulreps O)wa(f) + Pea e 031) (3)

where p i (r.,0;1) and pg ;(r.;,0) are static and dynamic pres-
sure gradients at the /th target point due to the kth source segment.
Enforcing the condition of prescribed pressure gradient p_ () over
the footprint at each time step yields a set of simultaneous equa-
tions in the weights ¢, (7)

E Pz,lk(rcl’();t)ck(t) =pzj(t)v Islsn (4)
k=1

The combined pressure from all annular source segments is the
superposition of Py(r,z;t) factored by time dependent weights

1)

p(r,z;t) = E Pu(r,z;0e(t), 1<I<n
k=1

Pu(r,z:0) = = po (1, 2)pf o (8) + palr,z:0) (5a)

Solutions of p(r,z;1) and p,,(r,z;1) for each unit source seg-
ment are outlined in what follows. The static solution for the kth
source segment py(r,z) takes the form

ps,k(r, Z) = E WS'm,k(Z)JO(k;‘mr)
m=1
dlsm,k(z) = Qi Sinh(krmz) + Bmk COSh(krmZ) (Sb)

where Jy(k,,,r) is the Bessel function of the first kind and zeroth
order. Substituting (5b) in the boundary conditions (15)—(1d) and
enforcing orthogonality of Jy(k,,,r) yields

‘,O(krmrd) =0, (661)

lsm=m,

B _ 2(7](‘]1(](”"}’]() - rkflJl(krmrkfl))
e rﬁ"%(krmrd)krm

(60)
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{— B tanh(k,, 1), fixed face, or alternatively
Ay o =

— B/tanh(k,,h), free face
(6¢)
Note that in (3), p u(rer,0)=0d.py i(re,0).
The dynamic solution p, (r,z;7) satisfies
0+ 1/rd, + 3 )p s — I/Ci&,,pdvk =0 (7)

and the homogeneous boundary conditions in (15)—(1d). Expand
p4(r,z;1) in terms of its orthogonal eigenfunctions

{//(In(z) =
sin(k_,h),sin(k_,h) =0 — k_,h =
1+ K =K @y = iy (9¢)

where w,,, is the eigenfrequency corresponding to mode (m,n).
Substituting (3) in (1a) with use made of (5a), (5b), (6), (8), and
(9) and enforcing orthogonality of ,,(z) and Jy(k,,,r) yields

dmn,k(t) + w%‘nnamn,k(t) == Nsd mn,kpf{v‘-/(t); ﬂvv([) = ﬂ4fw(t)/(9t4

h
2
Nsd mnk = Ef lvzfsm,k(z) lﬂdn(Z)dZ’ Isms my., Isns n,
0

(10)

In deriving Eq. (10) the term V(z)(—ps)pfw(t), (V%E&,,+1/rz9,)
vanishes since static pressure py(r,z) satisfies the equation Vﬁps
=0. Acoustic displacements (w,u); are determined from (A4)

Ipax=— p&tztwk

Py =— o (11)
The solution to (10) is expressed as a Duhamel integral
t
PNs n, .
1) == % f sin @,,,(t = Df(Ddr (12)
mn 0

Note that in (11) d,p4(re,050)=p 4 u(re,0:1) as defined in (3).
Once histories of dp,; and d9,p, are determined from solving
(10), histories of w; and u; are found by integrating (11) numeri-
cally.

3 Finite Difference

Consider a disk with traction-free boundaries satisfying the
conditions

d,p(0,z;0)=0 (13a)
p(rez;0) =0 (13D)
a.p(r,0;t)=0 (13¢)
p(r,h;t) =[H(r) = H(r = r,)1f(r) prescribed pressure
(13d)
) =—pf Oo<r<r
dp(r,hs1) == pf, (1), r prescribed acceleration
p(r,h;1) =0, r,<r<ry

where () denotes time derivative. Unlike the analysis in Sec. 2
where z has its origin at the excited boundary, in the finite differ-
ence scheme z has its origin at the nonexcited boundary. Condi-
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cos(k,,z),cos(k,,h) =0 — k,h=

Par(r.z:0) = 25 2 (0 0n(2) oK) ()

m n

Applying the homogeneous boundary conditions in (15)—(1d) to
Jolk,r) and ¢,,(z) produces

‘IO(krmrd) = 0’ (9&)

lsms=m,

1
—(2n—-1)m, fixed face
2 (9p)

ni, free face

tion (13a) is symmetry about the axis of revolution r=0, (13b) is
traction-free boundary at r=r, (13c) is fixed boundary at z=0,
and (13d) is prescribed acceleration for 0 < r<r, and traction-free
boundary for r,<r=<r, at z=h. Form the rectangular grid
i=l—n, d<r<r;-d, d.=rj(n.+1)
(14)
j=1—n,

d<z<h-d, d=hl(n+1)

In this grid, nodes do not include points on the boundaries. Ex-
pressing Eq. (1a) in central difference to first order yields the
following relations depending on position:

(a) Internal points d,<r<ry—d, d,<z<h-d,=2<i<n,
—1,2<j<n,-1

Q Pyt appiyjtasp; i+ a4(pi,j+1 +Pi,j-1) = I/Ciﬁi,j
(1 1 ) (1 1 ) (150
a=|>5+—1|, o=\5-—/], a
A2 2rd, T\ 2rd,

1 1 1
az=—2 d_f+d_§ s a/4=d—g

(b) Corner point at r=d,, z=d,=i=1, j=1
APt (ay+ a3+ a4)pi,j +aup; i = 1/52131',,'

(15b)

(c) Points along axis r=d,, d,<z<h-d,=i=1, 2<j<n,

-1
APyt (ar+ a3)pi,j + a4(pi,j+l +pi,j—l) = I/CZﬁt,j

(15¢)

(d) Corner point at r=d,, z=h—d,=i=1, j=n,

For prescribed pressure

apirj+ (e + as)p;j+ aup;jo — I/C;Z,ﬁi,j = ayf(t) (15d)
For prescribed acceleration

apij+ (o +as+ a’4)Pi,j taup;i— 1/C2ﬁi,_;‘
== pf»v(t)/dz

Points along boundary d,<r<r;—d,, z=d,=2<i<n,
-1, j=1

(e)

Transactions of the ASME



APyt apig it (a5 + a4)pi,j +tayp;jg = Uciﬁ[,j
(15¢)
(f) Points along boundary d,<r<r;—d, z=h-d,=2<i
=sn,~1, j=n,
For 0=<r=r, and prescribed pressure
APyt P jtasp; it oyp;io — llciﬁi,j = ayf(1)
(15)
For 0=<r=r, and prescribed acceleration

2..
Q1Piy1jt WPyt (a3 + a’4)Pi,j +aypij — Ucypij

=—pfu(0)/d,
For r,<r<r,

2..
P+ apiyj+asp i+ agp i — 1ep; ;=0
(g) Corner point at r=ry—d,, z=d,=i=n,, j=1

apiy;t (az+ a4)Pi,j +ayp; i = 1/C215i,j (15¢)
(h) Points along boundary r=ry—d,, d,<z<h-d,=i=n,, 2
sjsn,-1
25
Wp;jt+ asp; it CV4(Pi,j+1 +Pi,j—1) =lewpi; (15h)
(i) Corner point at r=r,—d,, z=h—d,=i=n,, j=n,

piyjt a3p;jtayp;; = I/Ciﬁi,j (15i)
In (15a)—(15i), the differential equation is satisfied only at in-
ternal points of the grid modified by constraints on the boundaries.
Applying (15a)—(15i) at all internal points in the grid (14) pro-
duces a set of ordinary differential equations in p; ;(¢) cast in the
form of tridiagonal blocks as follows:

p=c;(M,p-F(1)

A G
B2 AZ C2
M, = o o 0 (16)
Bn,—l Anr—l Cnr—l
B, A,

B; and C; are (n,Xn,) diagonal matrices, A; is the (n,Xn,)
banded matrix with bandwidth 3, and F is the global vector of the
forcing function in (15d) and (15f). For each point j= (1<j
<n,) along an i line in the grid, coefficients of p; ; in the Laplac-
ian define A, coefficients of p;_; ; define B;, and coefficients of
Pi+1,; define C;. The time derivative is expressed in the central
difference to first order allowing integration in time.

Viscous damping is included following the approximate equa-
tion (A12)

(1 + D338, + 1rd, + 0,)p = 1cidp =0 (A12)
This modifies (16) to the first order system
p=q
a=c;M,p + M,q - c;F (1) (17)

4 Results

The numerical experiments to follow assume a traction-free
gelatin disk 12.7 mm (=0.5 in.) thick and 25.4 mm (=1 in.) radius
with the boundary z=/ bonded to a rigid surface. In the elastic
model the gelatin properties are (Eisler [16]):

E=3.1X 10° dyn/cm?(=4.5 X 10* Ib./in.%),
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finite difference
(a2) z/h=0.5

modal
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Fig. 1 Acoustic histories from prescribed pressure: —, r=0;
-, r=0.5r,; — — —, r=0.9r,. (al), (b1) modal; (a2), (b2) finite
difference.
p=0.93 g/cm*(=8.7 X 107 Ib.s¥in.*), »=0.48 (18a)

The data in (13a) yield a small ratio of Lame’ constants w/\
=(1-2v)/(2v)=0.0417 resulting in reduced shear stresses and in
turn large displacements. In the acoustic model, bulk modulus £,
density p, and speed of sound ¢, are then

E,=E/(3(1 —2v)) =2.73 X 10" dyn/cm?*(=3.95 X 10’ 1b./in.%)
p=0.93 g/em3(=0.87 X 107 1b. s*/in.%)

cy=VE,/p=1.71 km/s(=6.74 X 10* in./s)

E, is determined from experimental measurements of c;,.

To confirm the implementation of the complicated analytical
approach adopting time dependent influence coefficients, results
are first compared to those from the more straightforward numeri-
cal finite difference approach derived in the Appendix. Figure 1
compares acoustic pressure histories from the two approaches for
a layer forced by a prescribed trapezoidal pressure pulse of unit
intensity lasting 8 ws with 2 us rise and fall times and 4 us pla-
teau applied over a circular footprint with radius r,=6.35 mm
(=0.25 in.). Figures 1(al), 1(a2) plots histories at z=0.54 and
Figs. 1(b1), 1(h2) at z=h. For each z, histories at 3 radial stations
r/r,=0, 0.5, and 0.9 are superimposed. Figures 1(al) and 1(b1)
show that the prescribed pressure pulse quickly changes profile as
the wave travels along z. The flat plateau of the profile acquires a
discontinuity in intensity after an interval Af;=3.5 us from the
wavefront equal to travel time of the wave over r,. Over this
interval intensity diminishes smoothly with z, while over the re-
maining interval Af,=4.5 us intensity diminishes steeply with z.
At z=h, intensity over Af; rises from reflections at the rigid
boundary. Histories from the two distinctly different approaches
agree confirming the implementation of the analytical model.

The difference in response between the acoustic model and the
3D axisymmetric elastic model is discussed in what follows. Fig-
ures 2(a) and 2(b) plot the eigenfrequency ) (kHz) versus radial
wave number \,,/7=k,,,r,/m with axial wave number n as pa-
rameter for the elastic and acoustic models. For each mode (m,n),
Q) of the acoustic model is 5 times higher than that of the elastic
model. The reason is that in the acoustic model () is proportional
to ¢, while in the elastic model it is proportional to the flexural
phase velocity ¢, that is bounded by the shear speed c;
=\E/(2(1+v)p). For v=0.48, c,/c,=4.97 consistent with the ra-
tio observed in Fig. 2. This is the fundamental difference distin-
guishing the two models. Furthermore, the acoustic model cannot
capture transverse wave propagation as no shear is included in the
model. Although in the elastic model extensional modes exist with
frequencies proportional to ¢, nevertheless flexural modes domi-
nate the response because of their lower frequencies.

(18b)
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Fig. 2 Frequency spectra of elastic and acoustic models. (a)
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Figure 3 plots prescribed motion f,(¢), f,,(f), and f,(z) when

acceleration is prescribed at the footprint. f.,(2) is made of 4 linear
segments

(1) Linear acceleration: f,(f)=ayt, 0<t<r,

(2) Constant acceleration: fwz(t)“: aty, [ <t<t,

(3) Linear deceleration: f,3(1)=f,x(t2)—a,(t—1,), t<t<t;
(4) Constant velocity: f,,4(£)=0, f,,4(53)=Ug, 3=t<1,4

Assuming that the first three time intervals are equal (At;=At,
=At3, At;=t,—t,_;) and @y =q/, then a; is determined by assigning

the constant velocity Uy to f,4(t3). In the analysis to follow
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Fig. 3 Prescribed motion at footprint. (a) Acceleration; (b) ve-
locity; (c) displacement.
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elastic acoustic

0.02:
g (a2) z=0

®1)2=0

(c2) z=h

-1.4E8
0

tlus) t (us)

Fig. 4 Comparison of elastic and acoustic histories for pre-
scribed acceleration: —, r=0; ---, r=0.5r,; — — —, r=0.9r,,. Elastic
model: (al1) w(r,0), (b1) o,,(r,0), (c1) o,,(r,h); acoustic model:
(32) W(r! 0)’ (b2) U-zz(rvo)’ (02) U-Zz(r! h)'

Uy= 14 m/s(=46 ft./s)
(19)

Figure 4 compares histories of the elastic and acoustic models
from prescribed acceleration. Displacement at z=0 (Figs. 4(al),
4(a2)) conforms to the prescribed value in Fig. 3(c). At z=0, Figs.
4(b1), 4(b2) compare histories of axial stress —o_ from the elastic
model to pressure p from the acoustic model. Peak stress, pulse
duration, distribution of p over the footprint, and shape differ
substantially between the two models. At z=h, Fig. 4(c1) and 4
(c2) compare —o, to p histories. There, magnitude and pulse
width also differ. It is evident from this comparison that the two
models differ appreciably in spite of the fact that in the elastic
model v=0.48 is close to the transition value 1/2.

The difference between the two models in response from uni-
form prescribed pressure and prescribed acceleration is demon-
strated in the example to follow. A uniform pressure pulse dupli-
cating that at r=0 in Fig. 4(b2) is applied at z=0 (see Fig. 5(b)).
The resulting histories of displacement w and pressure p at z=h
are shown in Figs. 5(a) and 5(c). Comparing histories in Figs.
4(a2) and 4(c2) to those in Figs. 5(a) and 5(c) reveals the sensi-
tivity of response to p distribution over the footprint. Further evi-
dence of this sensitivity appears when comparing p and w profiles
at z=0 of the two cases. For prescribed acceleration p (Fig. 6(al))
is not uniform while w (Fig. 6(b1)) is almost constant for r<r,
and discontinuous at =r,. For prescribed pressure, p (Fig. 6(a2))
duplicates the external pulse while w (Fig. 6(b2)) increases with r
reaching a maximum at r=r, with a discontinuity even stronger
than that in Fig. 6(b1).

The parameters characterizing the applied acceleration profile
are the final constant velocity U, and time interval At 5 of accel-
eration and deceleration to reach U, smoothly from rest. Figure 7
plots p.x against Uy with Aty 5 as the parameter and vice versa.
As expected, pp.y 18 linear with Uy (Figs. 7(al) and 7(a2)). In
contrast, py.x is nonlinear with At 5 (Figs. 7(b1), 7(b2)) follow-
ing a relation py,,, > UpAf}5, where the o depends on z. py, ap-
proaches a constant value as At 3— 0 when slope of the accelera-
tion profile in Fig. 3(a) becomes infinite. This is the limiting case
when Uj is applied instantaneously. For Afj 3<<3 us, ppax goes
through a transition when its value at z=h exceeds that at z=0.
The transition At, 5 is almost independent of Uj,.

Atj 3= A+ Aty + Aty =2 s,
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Figure 8(a) shows deformed shapes at t=8 us from the elastic
model for v=0.470 and 0.495 keeping bulk modulus E;, the same.
This requires expressing the constitutive law in terms of E; and v
as in Eq. (A2b). Note that bulging of material near the perimeter is
more pronounced for ¥=0.495 than for v=0.470. As v approaches
1/2, material compressibility diminishes followed by a reduction
in phase velocity along r near the free surface which delays propa-
gation of the wavefront. In turn, conservation of volume and pres-
sure release beyond the perimeter r>r, explains the formation
and intensification of the bulge. Indeed, the closer v gets to 1/2
the steeper the displacement gradient d,w along the perimeter
reminiscent of the acoustic w profile in Fig. 6(b1). The effect on
peak elastic stress (0.)max Of ¥ in the range 0.47<v=<0.498 is
shown in Fig. 8(b). Although (0.) .« at z=0 is insensitive to v for
v<<0.495, its value at z=h drops by 76% due to a 6% increase in

prescribed acceleration prescribed pressure
2.8E8
(al) (a2)
p 1 F ]
o
0.0125 T T
(b1) b2)
w
-0.0125 ﬁ/ .
o 0.2 04 06 0 02 04 0.6

r/ry rirg

Fig. 6 Acoustic pressure and displacement profiles at z=0

and t=4 us. (al), (b1) Prescribed acceleration; (a2), (b2) pre-
scribed pressure.
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Fig. 7 Variation of p,, with acceleration parameters U, and

Aty;. (al), (b1) z=0; (a2), (b2) z=h.

v. Unfortunately for attempts to use the acoustic model to capture
elastic features, this makes the discrepancy between acoustic and
elastic results even larger than that in Figs. 4(c1) and 4(c2).

Convergence of the elastic model with number of modes is
paramount in the comparison between elastic and acoustic results.
This is especially important since in the elastic model shear drops
modal frequencies substantially (see Fig. 2). A larger modal set in
the elastic model may be needed for its results to agree with the
acoustic model that includes volumetric modes only. To verify
convergence of the elastic model, histories from the analysis that
produced results in Fig. 4(b1) and Fig. 8(b) are compared to those
from the finite volume model employed by El-Raheb [15] that
couples projectile and disk with 40,000 nodes. Properties and ge-
ometry of the projectile are

E,=1.21x 10" dyn/em”® (=1.76 X 10° Ib./in.?),

p,=1 glem® (=93 X 107 Ib. s%in.%), v,=0.3

r,=6.35mm (=0.25 in.), h,=254 mm (=1 in.),

U, =20 m/s (=65 ft./s)

Cbp = (Ep(l - Vp)/((l + Vp)(l - zvp)pp))I/Z
=4.1 km/s (=1.6 X 10° in./s)

rp,h, are projectile radius and length, U, is striking velocity, and
cpp 1s dilatational speed of sound. Properties of gelatin are given
in (13a) and (13b). Based on the acoustic impedances (pc;) of
projectile and gelatin, the velocity of gelatin at the footprint fol-
lowing impact is approximately Uy=14 m/s (=45 ft./s). Histories
of axial displacement w at the footprint from the two models
coincide (Figs. 9(al), 9(a2)) since the asymptotic velocity U, at
the footprint is the same for both models. Figures 9(b1) and 9(b2)
compare histories of axial stress o, at the footprint from the two
models. In the finite volume model, the drop in o,, 4 us after
impact (Fig. 9(b2)) corresponds to t,,=c;,/2r, the arrival time at

2.8E8
z/h=0.05

O | T
G

1 4E8| \\ i
/h=03 \\\

o
047 048 0.49 0.5
0.495 v

I
s
it

(al)v =0470

@)v
Fig. 8 Effect of Poisson ratio » on (a) deformation snapshots

at t=8 us: (al) v=0.470, (a2) v=0.495; (b) variation of peak
stress with »
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This is evidenced by the deviation from linearity of the w histories =0.9r P P S o ’
=0.9r,

at t,, in Fig. 9(a2). In general, magnitude and shape of the o,
histories agree suggesting convergence of the analytical elastic
model.

For prescribed uniform pressure, w histories from elastic and
acoustic models agree (Figs. 10(b1) and 10(b2)) except at the
footprint z=0 (Figs. 10(al) and 10(a2)). In Fig. 11, the lead pulse
in the o, histories from the two models is followed by a plateau
with lower magnitude. The wave reflected from the constrained
face at z=h appears as a peak following the plateau. In the elastic
model,

(i) Risetime is longer;
(ii) History is modulated by a periodic oscillation;
(iii) Magnitude of the reflection dip is reduced.

For prescribed uniform pressure, the two models agree better than
for prescribed acceleration implying that mismatch between the
two models increases with magnitude of shear stress in the elastic
model. Indeed, near the perimeter of the footprint shear stress is
lower for prescribed uniform pressure than it is for prescribed
acceleration because in the later pressure distribution is not uni-
form (Ref. [15]).

5 Conclusion

Acoustic wave propagation in a weak layer is treated adopting
both a modal and a finite difference approach. The acoustic equa-

elastic acoustic

0.038

(al) 2/h=0 (@) 2h=0]

t(ns)

Fig. 10 Comparison of w histories from elastic and acoustic
models with prescribed pressure: —, r=0; -, r=0.5r,; — — -, r
=0.9r,
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tion derives from the elastodynamic equations when shear stress
vanishes. Two types of excitations are considered at the boundary,
prescribed pressure, and prescribed acceleration. In the modal ap-
proach, the external excitation is modeled by the static-dynamic
superposition method. Noteworthy results are

(I) Acoustic histories from the modal and finite difference ap-
proaches coincide.

(2) For prescribed acceleration, histories from the acoustic and
elastic models disagree both in magnitude and shape be-
cause the resulting pressure is not uniform. However the
two models show agreement for prescribed uniform pres-
sure because shear stress is reduced.

(3) Employing the elastic model reveals that remote from the
footprint (0,,)nax drops sharply as v approaches 1/2 mak-
ing the discrepancy between acoustic and elastic results
even larger.

(4) Convergence of the elastic model with number of modes is
verified by comparing its histories with those from a finite
volume model coupling projectile and disk.

(5) For prescribed acceleration at the boundary, rise time in
pressure history is proportional to At 3 while p., is pro-
portional to UpAr}3.

(6) Histories from prescribed pressure and prescribed accelera-
tion differ because of nonuniform pressure distribution over
the footprint.

(7) For Aty 3<(At}3)7, Pmax goes through a transition when its
value at the boundary z=h exceeds that at the footprint z
=0. (At 3)7 is a function of E, and p but is almost inde-
pendent of U,

Acknowledgment

This work was supported by a grant from DARPA, executed by
the U.S. Army Medical Research and Materiel Command/TATRC
Contract No. W81XWH-04-C-0084.

Appendix: Acoustic Equation in the Limit of Elasto-
Dynamic Equations

Consider the linear axisymmetric elasto-dynamic equations in
cylindrical coordinates

0,0, + (0, — agg)lr + 9.7,, = pd,u
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0y0 + 0, Tpe + T T = pOyW (A1)

where (0,,,049,0,.,7,.) are radial, circumferential, axial, and
shear stresses, and (u,w) are radial and axial displacements. Bulk
modulus E,, relates average normal stress o, to volumetric strain
gy

oy=Eyey=pcrey, E,=(GN+2u)/3 = E/(3(1-2v))
oy=(0,+ 0g9+ 0,)/3

(A2a)
where (N, u) are Lame’ constants and ¢}, is bulk speed of sound. In
terms of E;, and v, the constitutive law takes the form
3w . 3(1-2v)
g = ) bEVO;j (1+v)

ey=¢,+ept+e,. =V -u=du+ulr+dw

Eye; (A2b)

T A+
As v—1/2, 0;;— oy=E,ey recovering the bulk relation in (A2a)
v—12=71,.=0, o0,=0y=0,=-p,; (A3)

where §;; is Dirac’s delta function. Substituting (A3) in (A1) pro-
duces the linear Euler equation

(A4)

where u is the displacement vector. For a homogeneous fluid,
conservation of mass takes the form

pdu=-Vp,

dp+pd(V-u)=0 (A5)
The equation of state is
d
2P _ 2 (A6)
dp
implying that
IPa= Ciﬂtp (A7)

Unlike the elastic solid where deviatoric or shear stresses contrib-
ute to material stiffness and reversible strain energy, in a viscous
fluid these stresses are dissipative and irreversible. They are re-
lated to acoustic velocity by a constitutive law resembling that of
an elastic solid

7= (L= 2137) 80,8+ Mo

= ((=237)0,0 0+ O+ ) (AS)

x;,x; are independent variables and ({-2/37) and 7 are coeffi-
cients of viscosity for dilatational and deviatoric stains (see Lan-
dau and Lifshitz [17], p. 48). Equation (A8) resembles the consti-
tutive relation (A2b) where 3v/(1+v)E, and 3(1-2v)/(1+Vv)E,
are replaced by ({-2/37) and 7. The linearized Navier-Stokes

equations simplify to

Journal of Applied Mechanics

pou=—Vp,+d[({-1/6m) V (V-u)+(9/2)V’u] (A9)

Conservation of mass and the equation of state are given by (A5)
and (A6). Substituting for d,p from (A7) into (A5) yields

dlpa+pcy(V-u)]=0 (A10)

Equation (A10) is the time derivative of (A2a) with oy replaced
by —p. For a nonviscous fluid, taking the divergence of (A4), then
eliminating u using (A10) determines the acoustic equation

(B, + 1rd,+ 8,)pg—1/cidupy=0 (A11)

Equation (A11) is purely hyperbolic nondispersive.

For a viscous fluid, adopting the procedure that led to (A11) on
(A9) and assuming that {=1/67 yields the approximate viscous
acoustic equation

(1+ 9c}3) (8, + 1rd, + 0.)pa—cidupa=0  (A12)

where 7=7/(2p) (cm?/s) is kinematic viscosity.
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A Four-Parameter lwan Model
for Lap-Type Joints

The constitutive behavior of mechanical joints is largely responsible for the energy dis-
sipation and vibration damping in built-up structures. For reasons arising from the
dramatically different length scales associated with those dissipative mechanisms and the
length scales characteristic of the overall structure, this physics cannot be captured
through direct numerical simulation (DNS) of the contact mechanics within a structural
dynamics analysis. The difficulties of DNS manifest themselves either in terms of Courant
times that are orders of magnitude smaller than that necessary for structural dynamics
analysis or as intractable conditioning problems. The only practical method for accom-
modating the nonlinear nature of joint mechanisms within structural dynamic analysis is
through constitutive models employing degrees of freedom natural to the scale of struc-
tural dynamics. In this way, development of constitutive models for joint response is a
prerequisite for a predictive structural dynamics capability. A four-parameter model,
built on a framework developed by Iwan, is used to reproduce the qualitative and quan-
titative properties of lap-type joints. In the development presented here, the parameters
are deduced by matching joint stiffness under low load, the force necessary to initiate
macroslip, and experimental values of energy dissipation in harmonic loading. All the
necessary experiments can be performed on real hardware or virtually via fine-resolution,
nonlinear quasistatic finite elements. The resulting constitutive model can then be

used  to

predict

the  force/displacement  results  from  arbitrary  load

histories. [DOI: 10.1115/1.1989354]

1 Introduction

The constitutive behavior of mechanical joints is largely re-
sponsible for the energy dissipation and vibration damping in
built-up structures. For reasons arising from the dramatically dif-
ferent length scales associated with those dissipative mechanisms
and the length scales characteristic of the overall structure, this
physics cannot be captured through direct numerical simulation
(DNS) of the contact mechanics within a structural dynamics
analysis. The difficulties of DNS manifest themselves either in
terms of Courant times that are orders of magnitude smaller than
that necessary for structural dynamics analysis or as intractable
conditioning problems.

The only practical method for accommodating the nonlinear
nature of joint mechanisms within structural dynamic analysis is
through constitutive models employing degrees of freedom natu-
ral to the scale of structural dynamics. In this way, development of
constitutive models for joint response is a prerequisite for a pre-
dictive structural dynamics capability.

To be useful, such constitutive models must have the following
properties:

e They must be capable of reproducing the important features
of joint response—primarily the strongly nonlinear depen-
dence of energy dissipation on the amplitude of harmonic
loading and the significant but less dramatic decrease in
joint stiffness with load amplitude.

e There must be a systematic method to deduce model param-
eters from joint-level experimental data or from very fine
scale finite element modeling of the joint region.
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* Model integration into a structural-level finite element code
must be practical.

A framework that has potential for providing that balance is that
due to Iwan [1,2]. Of his models, the most prominent has been the
parallel system of Jenkins elements, sometimes called the parallel-
series Iwan model. Such models consist of spring-slider units ar-
ranged in a parallel system as indicated in Fig. 1. Though Iwan
introduced his constitutive models for metal elastoplasticity, they
have since been used to model joints [3,4], and the work reported
here addresses how that model form can be exploited in a system-
atic manner to capture the important responses of mechanical
joints.

Mathematically, the constitutive form of the model is [1,6]

F(1) = f k() u(t) - %1, $)1db (1)
0
where u is the imposed displacement, F() is the applied force,
p(J) is the population density of Jenkins elements of strength &,
k is the stiffness common to all of the Jenkins elements, and
%(z, P) is the current displacement of sliders of strength .

The slider displacements, (¢, $) evolve from the imposed sys-
tem displacement, u(z)

$0.) = i if lu-%(r,@)|= btk and ii(u—x(t,$) >0
7710 otherwise
(2)

It is assumed (0, ) =0 for all ¢. Note that Eq. (2) guarantees that

u—%(z, )| < @p/k at all times.

Noting that all Iwan models—even those without uniform
k—are Masing models and all Masing models can be represented
by Iwan models with uniform k, one sees that there is no loss in
generality in employing identical stiffnesses among the Jenkins
elements [15].
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Fig. 1 A parallel-series lwan system is a parallel arrangement
of springs and sliders (Jenkins) elements

The parameter k can be removed from the above equations
through the following changes of variable:

b= dlk (3)
p(¢) = k*plkp) )
x(t. ¢) = %(t.k¢p) (5)

Equations (1) and (2) now become

F(r) = f p(P)[u(t) — x(t,¢)1d (6)

0
and

x(t’(ﬁ):{u i lu-x(t, )= ¢ and

0 otherwise

ulu—x(t,¢)] >0

()
We are now guaranteed that [lu—x(, )| < ¢.
The new quantities have different dimensions than the originals.

Though ¢ has dimensions of force, ¢ has dimensions of length.
Similarly, p has dimensions of 1/force but p has dimensions of
force/length®. The dimensions of the external loads and displace-
ments applied to the joint remain unchanged.

Two overall parameters for the interface can be expressed in
terms of the above integral system. The force necessary to cause
macroslip (slipping of the whole interface) is denoted Fg, and the
stiffness of the joint under small applied load (where slip is infini-
tesimal) is denoted K. Macroslip is characterized by every ele-
ment sliding

u(t) = x(t, ) = ¢ (8)
for all ¢, so Eq. (6) yields
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slope= 3 +y

Logl0(Force)

Fig. 2 The dissipation resulting from small amplitude har-
monic loading tends to behave as a power of the force
amplitude

Fy= f bp()dd ©)
0

Because no elements have slipped at the inception of loading, (at
t=0) Eq. (6) yields

KT=J p()dd (10)
(

)

2 Response to Small and Large Force

Experiments involving large monotonically applied forces can
indicate the force necessary to initiate joint macroslip but, for
reasons explained below, it is very difficult to obtain any other
meaningful detail on joint response from quasistatic experiments.
On the other hand, resonance experiments do enable the measure-
ment of dissipation per cycle with reasonable precision even at
relatively small loads [7,8]. Additionally, with proper calibration,
those experiments can be used to obtain effective stiffness as a
function of load amplitude. It is shown below how each sort of
experimental data can be used to determine the parameters of a
parallel-series Iwan model that can capture both quasistatic and
dynamic behaviors.

2.1 Small Amplitude Oscillatory Loads. When a joint is
subject to small amplitude oscillatory lateral loads, the dissipation
appears to behave as a power of the amplitude of the applied load.
Generally, the exponent of that relationship is a number lying
between 2.0 and 3.0. Goodman [9] pointed out that the Mindlin
solution [10,11] for the energy dissipation resulting from oscilla-
tory lateral loads imposed on two spheres pushed together yields a
power-law slope of 3.0 in the regime of small lateral loads.

In Fig. 2, that power-law slope is represented as 3+ y where
is a negative number of small magnitude (-1 < y<0). Mathemati-
cally, this is expressed as the following:

D(F,) = F3+X (11)

where D is the dissipation per cycle resulting from a harmonic
load of amplitude Fj, and x and v are selected so that Eq. (11)
matches experimental data collected at small force amplitudes.

The dissipation per cycle associated with oscillatory displace-
ments [u(t)=ugsin(z)] applied to a Jenkins element of strength ¢
is the area within a parallelogram-shaped hysteresis loop having
height 2¢ and base 2(ug— ¢). The dissipation integrated over all
Jenkins elements is

D=f 4[“0— dlop(h)d (12)

0
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Beginning of Macroslip

\ (uS’FS)

Force

Pinning by Shank of Bolt

Microslip Regime

Displacement

Fig. 3 The monotonic pull of a simple lap joint shows the
force saturates at Fs as the displacement passes a critical
value

One major simplification made possible for histories where the
displacement is bounded by a small value up,, (i.e. |u(2)] < tmay)
is that the integral of Eqgs. (6) and (7) can be simplified to

Fl) = f " (@) - x(t. 8 + u(o) f p($)dd (13)
0 ”lnax
=Kqu(t) + 0(u?,,) (14)

where the O( ) is the notation for quantities that are on the order
of their argument as the argument goes to zero [12].
Expanding p(¢) as a

p(¢) = PXag+ap+ard-++), (15)
and substituting Egs. (11), (14), and (15) into Eq. (12), and match-
ing leading terms, we find
UKD+ B+

4
for small ¢ [6]. This provides something of the character of the

population distribution that is necessary to yield a power-law type
dissipation behavior.

p() P+ 0('*Y) (16)

2.2 Large Monotonic Loads. Let us consider large mono-
tonic pulls (0<u). Equations (6) and (7) show that

u(t) o
F(r) =f dp(P)dd+u®) | p(d)dd (17)
0 u(t)
from which Iwan derived
PF(u
:u(z)=-P(u) (18)

Because the second derivative of force cannot be measured
with any resolution for most joints at small displacements, the
above is at best only useful for large-displacement experiments.

Figure 3 sketches the monotonic force-displacement curve for a
canonical lap joint. We anticipate that the force saturates at Fg and
interface displacement ug, corresponding to complete breaking of
interface bonds.

Some comment should be made about why we have to guess at
the force displacement curves for joints in structures such as we
usually encounter. The key is that the interface mechanics cannot
be viewed directly. The interface region is acted on by external
loads conveyed through an elastic structure. Additionally, kine-
matic measurements are of the net displacements of that compos-
ite system—not of the joint. Particularly vexing is that the elastic
subsystem is generally much more compliant than the interface
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Fig. 4 The numerical predictions of a finely meshed system
containing a single lap joint illustrate how interface displace-
ments are obscured by the large compliance of the elastic re-
sponse of the attached members. In the figure at top, both
sides of the system are clamped, and stretched horizontally. In
the figure below that, the left side is clamped and a zero-slope
boundary condition is imposed on the right.

until the interface has been forced into the vicinity of macroslip.

This insight is illustrated in Fig. 4, showing large elastic defor-
mations taking place in a lap joint specimen long before serious
slip occurs at the joint. As suggested by the drawing in Fig. 5, the
force-displacement plot looks nearly linear until the applied force
almost reaches that necessary to induce macroslip of the joint. The
nearly linear region is dominated by the compliance of the elastic
part of the system and the response of the interface is almost
entirely obscured. Once the force is nearly sufficient to cause
macroslip, it is the (near infinite) compliance of the interface
which dominates. Though such experiments do inform us of the
force necessary to initiate macroslip of the joint, one can conclude
that they are not very useful to achieve resolution on the force-
displacement response of the interface itself.

It should be said that for some structures for which the joints
represent a major source of stiffness degradation of the structure,
Levine and White [3] were able to deduce Iwan parameters by
examining distortion of nominal frequency response curves as ex-
citation frequency increased. This is an illustration of deducing
joint properties indirectly through observation of the integrated
behavior of the full structural dynamic response.

Resulting Force

Imposed System Displacement

Fig. 5 Typically the force displacement conditions on elastic
systems containing joints is as dominated at low loads by the
elastic compliance (Region A). As the applied load approaches
that necessary to initiate macroslip the force displacement
curve begins to flatten (Region B). In macroslip the force-
displacement curve is exactly flat (Region C). The only useful
information about the joint available from such experiments is
identification of the force necessary to initiate macroslip.
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p(9)

o q) max

Fig. 6 A spectrum that is the sum of a truncated power law
distribution and a Dirac delta function can be selected to sat-
isfy asymptotic behavior at small and large force amplitudes

3 Truncated Power-Law Spectra

The above observations may be summarized:

* At small displacements the population density p(¢) behaves
as in Eq. (16);

¢ Initiation of macroslip occurs at finite displacement, indicat-
ing that p(¢) has finite support;

e Equation (18) implies that a discontinuous slope of the
force-displacement curve at the initiation of macroslip cor-
responds to a delta function in p;

motivating us to consider parallel Iwan systems having a power-
law population distribution terminated by a Dirac delta

p(¢)=R¢X[H(¢)_H(¢_ ¢max)]+S5(¢_ d’max) (19)
where H( ) is the Heaviside step function and ¢,,,, is numerically
equal to ug. The coefficient S accounts for the potential disconti-
nuity in the slope of the force displacement curve at the inception
of macroslip: S is the slope of the force-displacement curve just
before macroslip. This form of population distribution is shown
graphically in Fig. 6.

Substitution of Eq. (19) into Eq. (6) yields

</’max
F(1) =f [u(®) = x(t, ) IRF*d b + S[u(t) = x(£, i) ]
0

(20)

Referring to Eq. (9), the macroslip force for the system be-
comes

¢max
Fs=f pp(P)d (21)
0
+2
" x+2) + S bmax (22)
+1
=¢max(1m)[x—” + ﬁ] (23)
x+1 /| x+2
where
R +1
pes / (145)
x+1

The dimensionless quantity 3 is the ratio of the joint stiffness due
to the @X term in Eq. (19) to that due to the & function term. It will
be shown below that 8 does strongly influence the shape of the
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log-log curve of dissipation versus force amplitude in harmonic
loading and the shape of the force-displacement curve in mono-
tonic loading.

One notes that R and S each have fractional dimension—not
desirable qualities in constitutive parameters. On the other hand
F¢ does have the desirable features of having integral dimension
and being measurable. One may invert Eq. (23) to solve for R and
employ Eq. (24) to express S in terms of Fg

Fs(x+1)

x+1
m:i(ﬁ+—x+2)

R= (25)

and

S= (i i (26)

%) (&1)
B+ X+2

Referring to Eq. (10), the interface stiffness could be computed
as

) R Pl
KT:L P(¢)d¢=(XTl)+S=(XT1)(1+B)
__ FU+p 27)
s <ﬁ+x_+1)
max X+2

The stiffness K7 can be estimated from resonance experiments
in a manner described below. Because Ky can be estimated from
experiment and involves no fractional units, it is also a desirable
parameter.

Equation (27) can be solved for ¢p,,,

Fs(1+p)

Drmax = —+1 (28)
I(T<,B+ X—)
X

+2

which is substituted into Egs. (25) and (26) to define our model
completely in terms of a preferred system of parameters:
{Fg,Kr,x,B}. The first two of these are measurable and of inte-
gral dimension and the last two are dimensionless.

3.1 Monotonic Pull and Hysteresis. Though, as discussed
above, performing meaningful monotonic pull experiments on a
jointed structure is not feasible, it is worthwhile to express the
force-displacement curve that would result if the experiment could
be performed on the joint alone. This is particularly true because
the original parallel-series Iwan model was presented in terms of
the properties of such a curve.

Substituting the equations for monotonic pull into Egs. (19) and
(20), transforming to our preferred parameter set, and normalizing
by Fg we find that

s(ﬁx+2,8+x+2—sx“)
Bx+2B+x+1

where s=u/ ¢, Note that the only parameters of this dimension-
less curve are y and B, themselves dimensionless. The above
function is plotted for y=-1/2 and for three values of g in Fig. 7.
This figure shows that smaller values of 8 correspond to larger
amounts of curvature prior to macro-slip, but greater discontinuity
in slope as the imposed force approaches that necessary to initiate
macroslip. In fact, examination of Eq. (20) shows that as 8—
the response of the model to monotonic load approaches that of a
single Jenkins element.

The smoothness—or lack of smoothness—of the transition
from partial slip to macroslip is indicated by

J(s) = F(s )/ Fs = (29)
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Backbone Curves for Three Values of3

u/p

max

Fig. 7 The dimensionless force-displacement curve for mono-
tonic pull for the four-parameter model for y=-1/2 and for
three values of g

Bx+2)

Bx+2B+x+1
and we see that the transition is sudden unless S=0.

As Peng [4] points out, parallel-series Iwan models satisfy the
Masing conditions postulated for plastic materials. The first Mas-
ing condition, which actually is due to Masing, is that if the virgin
material is monotonically deformed to some state and then subject
to cyclic deformation at that same amplitude, the following sym-
metries will exist:

fls=1)= (30)

e The “forward” part of the hysteresis curve will look like the
loading (“backbone”) curve, but stretched along each of the
displacement (strain) and force (stress) axes by a factor of
two and translated to terminate at the tip of the backbone
curve.

e The “return” part of the hysteresis curve will look like the
forward part, but reflected along each of the displacement
(strain) and force (stress) axes.

The second condition states that the equation of any hysteretic
response curve is obtained by (1) applying the Masing hypothesis
using the latest point of loading reversal and (2) requiring that if
an active curve crosses a curve described in a previous cycle, the
current curve follows that of the previous cycle. These two con-
ditions constitute the extended Masing rules [5]. With these rules
the response to any load history can be computed from the back-
bone curve and a record of all load reversals. (Among the ramifi-
cations is that K is twice the slope of the hysteresis curve just
after reversal.)

Mathematically, if the joint is cycled between dimensionless
extensions u/u,,=s, and —s,, then on the extensional branch, the
force/displacement curve will behave as

f;<s>=—f<so>+zf(”7‘“’) (31)
and will behave on the compression branch as
f) = f(s0) - 2f( - ) (32)

Using the extension curve for the four-parameter Iwan model of
Eq. (29), maximum extension so=3/4, x=1/2, and two values of
BB, one obtains hysteresis loops indicated in Fig. 8.
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Hysteresis Curves for Two Values of §

1 T T T T T T T

0.8

0.6

0.4

02

L\Lw
S 1
L
02} 4
—04} Backbone |
-0.6
Hysteresis
| ——p=0] ]
mmm Bt
4 . . | | . | | 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u /q)max

Fig. 8 The dimensionless hysteresis curves for the four-
parameter model for y=-1/2 and for two values of g8 are shown
in gray. The maximum and minimum extensions are set to 3/4
of that associated with the inception of macroslip. The corre-
sponding curves for the unidirectional extension of a virgin
material (backbone curves) are shown in black.

3.2 Oscillatory Response. For reasons discussed above, qua-
sistatic experiments alone provide nowhere near sufficient data to
characterize joints. Good supplemental data can be obtained by
dynamic resonance experiments [7,8]. In these experiments a
jointed specimen is anchored on one end by a large sprung mass
and is excited on the other end by an electromagnetic shaker act-
ing through a force transducer. The shaker is driven to excite the
system through resonance and to do so at various levels of force
amplitude. Because this is a resonance experiment, the energy
dissipation per cycle can be deduced from the force amplitude
measured at the force transducer and the acceleration measured at
the reaction mass [7].

Additionally, the joint stiffness at each force amplitude can be
estimated in the following manner. From the resonance frequency
and the known mass, one may deduce an effective compliance of
the mechanical system. That compliance is the sum of the com-
pliance of the force transducer, the compliance of the elastic part
of the specimen, various attachment compliances, and the compli-
ance of the joint. The sum of all but the joint compliance is de-
duced by performing a resonance experiment on a nearly identical
unjointed specimen (machined from a single piece of metal). The
compliance measured with the unjointed specimen is nearly al-
ways force independent and is assumed to be elastic. One sub-
tracts that elastic compliance from the effective compliance mea-
sured with the jointed specimen to identify the compliance of the
joint

]/K(F()) = Cexp(F) - CE (33)

where K(F,) is the effective joint stiffness at force amplitude
Fy, Cexp(F) is the compliance deduced for the system with the
jointed specimen, and Cg is the compliance deduced for the sys-
tem with the unjointed specimen. The parameter K7 is the stiffness
of the joint under zero load and is approximated in a practical
manner by the K(F,) found at the lowest driving force employed.

Direct solution of Egs. (7) and (20) for a problem specified by
F=Fgysin(t) would involve the solution of a difficult nonlinear
integral equation. An alternative approach is to specify u(7)
=ugsin(7) and then to solve for the resulting dissipation and peak
force.

Noting that the maximum displacement of Jenkins elements of
strength ¢ is x(¢, p)=uy— ¢, we observe that for uy< ¢, the
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Dimensionless Dissipation for Four Values of 3
10 T T

Fig. 9 The dimensionless dissipation per cycle as a function
of normalized force for the four-parameter model for y=-1/2
and for three values of 8

dissipation per cycle of such elements is 4(ug— @) p. The net dis-
sipation per cycle is exactly that given by Eq. (12). For the density
function of Eq. (20) and for ug< ¢,y the dissipation per cycle is

B+

__ ARw®
D= e+ 2) (34
=4VX+3(F—§) (IB+ 1)(X+ 1) (35)
Ky ( X+ 1

2
—) (x+2)(x+3)
X+2
where r=ug/ Ppax-

Next, observing that the maximum force seen in each cycle is
that force current during the maximum displacement in the cycle

g ‘bmax
Fo= f p(P)dd+ MOJ p(p)de (36)
0 g
+1 +2
RuX
=u0<S + R Pmax ) _— =4 37)
x+1/ (x+D(x+2)
Equation (37) is made nondimensional by dividing by Fy
+1) =Y (x+2
FofFy=1 (B+1)-r"/(x+2) (38)

B+(x+D/(x+2)

The experimental quantity most easily measured is dissipation
(D) as a function of applied lateral load amplitude (F). Exami-
nation of Egs. (35) and (38) permits us to observe the following:

* As uyg—0, Fo—r(B+1)/B+(x+1)/(x+2) =uoKy, and
dlog(D)/dlog(Fgy) — x+3.

* AS uy— P Fo— Fs, and dlog(D)/dlog(Fy) — (x+3)(B
+(x+1)/(x+2))/B.

A plot of dimensionless dissipation per cycle (D Ky/ Fg) versus
normalized force amplitude (Fy/Fs) is shown in Fig. 9 for yx
=-1/2 and three values of (. As expected, we see that for small
force amplitudes (Fy<Fg/2) and all values of B the dissipation
per cycle behaves as a power law. Also for values of S substan-
tially greater than 1, the dissipation appears to have power-law
behavior over the full range of force amplitude. Asymptotic
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4-Parameter Iwan Model Fit to Case: AFF1 Joint
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Dissipation per Cycle D KT/F

A Experimental Dissipation
Model via Fg, K . %, B
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107 . .
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Fig. 10 Fit to dissipation data from a single leg of a compo-
nent mass mockup. In this case, there is almost no curvature in
the log-log plot of dissipation per cycle versus force amplitude,
consistent with a power-law relationship. The dimensionless
parameters employed were y=-0.632 and 3=3.68.

analysis of Egs. (35) and (38) as 8— o0 shows that this should be
the case.

Equation (37) permits us to express the secant stiffness at large
amplitude oscillation

F x+1
r=Boifi

w0 T D) (39)

4 Identifying Parameters

Of the four parameters Fg, K7, X, and 3, the first can be deter-
mined experimentally or estimated via statics and an assumed
value for Coulomb friction. The second K7 might be estimated by
extrapolating specimen stiffnesses obtained from resonance down
to a zero-load state, though that approach magnifies the experi-
mental uncertainty. It is the determination of y and B which is
particularly challenging.

The following approach is the one that the author has found
most robust and most reliable at giving unique parameters. In this
approach one attempts simultaneously to fit the dissipation data
over the whole experimental range in a least-squares sense and to
match the measured stiffness at some point in the midst of the
range of applied load. This is achieved by employing inner and
outer iteration loops. In the inner loop one employs Egs. (35) and
(38) Fg, and an estimate for K, to deduce x(K;) and B(Ky) that
will reproduce the measured dissipation per cycle over the experi-
mental load range. This is done most easily with a canned opti-
mization tool, such as that available through MATLAB’S fininsearch
tool [13]. (One subtlety is that each comparison of the four-
parameter model with the experimental data requires a solution
for r(x, B,Fy/Fs).) The outer loop consists of an Newton iteration
to identify K; so that when the parameters Fg, Ky, x(Ky), and
B(K7) are employed in Egs. (38) and (39), the stiffness K(Fy) is
correctly predicted at some load in the middle of the experimental
data.

Figures 10 and 11 show reasonable fits to experimental dissipa-
tion when the automated method is exploited. In the first case,
(Fig. 10) the fit is to data from a bolted leg of a component mass
mockup (Fig. 12) of a mock W76 warhead substructure. We see
that the dissipation data appear to lie on a straight line when
plotted in a log-log manner. The parameters used to fit that data

SEPTEMBER 2005, Vol. 72 | 757



4-Parameter lwan Model Fit to Case: Stepped Joint
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Fig. 11 Fit to dissipation data from a stepped specimen. In this

case, there is appreciable curvature in the log-log plot of dissi-
pation per cycle versus force amplitude. The dimensionless pa-
rameters employed were xy=-0.304 and $=0.613.

are indicated in the figure caption. The value of F'g¢ employed was
deduced from statics and a postulated coefficient of friction of 0.5.

The log-log plot of dissipation versus lateral force for the
mockup leg problem is nearly linear, but that is not the case for
the stepped specimen shown in Fig. 13. Though this is a geometri-
cally simple specimen, the dissipation data (shown in Fig. 11)
shows substantially more curvature. The qualitatively different re-
sponse might be due to the nearly singular normal tractions at the
edges of the contact patch. In this case, there was no unjointed
specimen constructed and it is impossible to know how much of
the specimen compliance to ascribe to the joint, so K; was arbi-
trarily assumed to be three times the specimen stiffness and only
the inner iteration was employed. The joint parameters of the fit-
ting curve are indicated in the figure caption.

In the case that all data has been collected well below the mac-
roslip force, the dissipation behavior will appear to be power law
in nature. A good fit to that dissipation can be obtained with any
value for Fg substantially above the experimental loads and ap-
propriate values of 8 and y. Of course, if one plans to use a joint
model for loads that may approach macroslip, it is appropriate to
employ the best possible estimate for Fg.

~1

Fig. 12 The leg section of the mockup. To the left is a finite-
element mesh of the full leg section, in the middle is the actual
leg section in the test apparatus, and to the right is a sketch
indicating the interface being modeled by the four-parameter
model.
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Fig. 13 A stepped specimen shows qualitatively different dis-
sipation than a simple half-lap joint. The difference may be due
to the near singular traction that develops at the edges of the
contact patch.

5 Discretization

Equations (6) and (7) are sufficient to solve for the force re-
sponse of the above Iwan system once one has the constitutive
parameters (Fg, K7, x, and B). It is useful to discretize the integral
in Eq. (6) in the following manner. One breaks up the interval
(0, ¢pmay) into N intervals whose lengths form a geometric series

A, = aAg, (40)

where « is a number slightly greater than one (1 <a) and ¢y, is
determined from Eq. (28). That the sum of the intervals must be
the whole interval

forallm+1<N

N
21A¢m=¢max (1)
permits us to solve
A, =" A, (42)
where
Agy = [%“—‘1] 43)
a¥ -1

We consider one sample point, characterized by slide strength
¢,,, at the midpoint of each interval A¢,,. At that sample point,
the evolution of x,,(z) is computed per Eq. (7). For quadrature
purposes, we refer to the coordinates of the left and right hand of
each subinterval as ¢, and @, ,,, respectively.

The force is evaluated by a discrete version of Eq. (6).

N
F(t)= 2 F,,(0) + F 1) (44)
m=1
where
¢2+)(_ l2+)(
R ”;_'_ san[u(r) — x,(£)] if |Ju(®) = x,,()] = ¢,
Fm(t) = 1 X]
¢rtnx_ l:—nX .
R [u(@®) —x, (0] if [Ju(r) = %, (D] < by
+X

(45)
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Effect of Number of Quadrature Intervals on Computed Dissipation
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Fig. 14 Comparison of dissipation prediction of Eq. (35) with
the quadrature of Eqs. (44) through (46)

F6= Sd)max[u([) - Xg(l‘)],

b 5= Pmax» and x5 and each x,,(¢) evolve per Eq. (7). Appropriate
values for R and S are determined from Egs. (25) and (28) and
Egs. (26) and (28), respectively.

Note that the above quadrature reproduces the values for Fg in
Eq. (22) exactly.

The discretization discussed here is illustrated by the results of
a C++ code that imposes cyclic deformation on a four-parameter
Iwan system and calculates the energy dissipation once steady
state is achieved (always on the second cycle). Those numerical
calculations are compared with the analytical expressions of Eq.
(35). In Fig. 14 we see that for the amplitude range 0.1F¢<F|
< Fy integration over the responses of as few as ten Jenkins ele-
ments (N=10) appears to be sufficient. Satisfactory results were
achieved in all exercises using values of a=1.2 and N=50. This is
certainly overly conservative.

The question arises as to whether there is analytical guidance
on how many Jenkins elements are necessary. The simplest crite-
ria are

(46)

* In a monotonic pull, the stiffness degradation from K down
to zero at macroslip should occur without too much discon-
tinuity in the stiffness slope

maX{P( d’m)Ad)m} < KT (47)

The maximum term in the above sequence is that associated
with the last increment, so the condition is

l+a X
aN-l(—) -1
R 2 i G Doy <k, (ag)
V-1 Vo1 Tma T
For large N, this condition becomes
+1 + DX (a-1
()t o) o
B+1 2XaX*

For ranges of y and B considered above (0<y<1 and 0
< ), values of « on the order of 1.1 or 1.2 appear to cause
Eq. (49) to be satisfied adequately.

* The sliding forces associated with the weakest element
should slide at a force well below the smallest increment of
force AF,;, between reversals that one wants to capture
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2 2
R¢rjx_ ITX
24+ x

< AFmin (50)

This becomes a condition that

_ +2
R<¢max;]\/__11)x /(X+2)<AFmin (5])

The quantity on the left goes as a~X*2N explaining why
Eq. (51) appears to be satisfied with fairly modest values of
N.

6 Conclusion

The four-parameter model presented here appears to be capable
of capturing the dissipation behavior found from harmonically
loaded experiments on lap-type joints conducted so far. Further,
the tools have been demonstrated to deduce the necessary model
parameters with only modest effort.

Though the results presented here provide some reason for op-
timism, comparison with more sophisticated experiments should
be made. Among those experiments could be multifrequency ex-
periments such as discussed by Segalman [6] or random vibration
experiments as performed by Smallwood for his hysteretic model
[14]. Such experiments would be necessary to validate this four-
parameter model in ranges and types of loadings other than those
used to calibrate it.

The delta function in Eq. (20) causes the force-displacement
curve to have a discontinuity in slope as the joint approaches
macroslip. Because there does not appear to be any precise data
on this transition, it is unclear whether the slope discontinuity is a
problem. The discontinuity can be removed by replacing the delta
function by an integrable singularity at the expense of adding one
more parameter. A model of this sort has been suggested in Ref.
[15].

Finally, one should note that constitutive equations of the sort
developed here are “whole-joint” models. Such models may cap-
ture the response of the joint for the class of loads from which
model parameters were deduced, but they give little insight into
the microphysics taking place. Also, it is not yet clear how one
would integrate joint data taken from qualitatively different load
types—such as tension and moment loads—into models of this
sort.

Over that longer term, more sophisticated approaches must be
developed that better incorporate the distribution of tractions and
displacements that develop dynamically around the joint and that
do not presume a specific nature to the joint loading.
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vibration systems with viscous damping is proposed. A group of governing equations for
dynamic condensation matrix are derived from the eigenvalue equations defined in the
state space. Two iterative schemes for solving these governing equations are provided.
Based on different state space formulations, two more groups of governing equations are
developed. A comparison of the present method with three iterative approaches proposed
recently is provided. The present approach is implemented into two practical vibration

systems, a tall building with one tuned mass damper and a floating raft isolation system.
The results show that the proposed method has much higher accuracy than the other
three approaches while the computational effort is almost the same.

[DOL: 10.1115/1.1993668]

1 Introduction

The development of increasing complex structures and me-
chanical systems demands sophisticated simulation techniques for
design, control, and optimization. Due to the complex nature of
these systems, the discrete models resulted from the finite element
method are usually very large. If these models are directly used in
the simulation, the computational effort will be extremely expan-
sive. Therefore, the development of efficient model reduction
methods for creating accurate low-order dynamic models has re-
cently become a major goal of simulation and modeling research.

Various reduction techniques have been proposed to reduce the
size of the full model or the dimension of the structural matrices
involved in the formulations. Dynamic condensation, as an effi-
cient technique for model reduction, has received much attention
in recent years [1-15]. One of its important features is that the
resulted, small size model is defined in the subspace of the origi-
nal full-size physical space. The coordinates on which the reduced
model is based have their inherent physical meanings. Thus, the
reduced model is very convenient to be used in further dynamic
analyses. Furthermore, one major by-product of the dynamic con-
densation is the partial eigensolution of the full model which is
very useful in many dynamic problems. Therefore, this technique
has been successfully applied to the eigenvalue problem analysis,
test-analysis model correlation, active vibration control, finite el-
ement model updating, parameter identification, dynamic simula-
tion, and modeling. The detailed review and complete list of pub-
lications on the dynamic condensation technique can be found in
Qu [16].

Currently, most of the research in this area concentrates on
undamped systems. However, the undamped assumptions are in-
valid in many situations. Examples of such cases are the structures
made up of materials with different damping characteristics in
different parts, structures equipped with passive and active control
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systems, and structures with layers of damping materials. The
condensation methods for undamped models may be valid for the
systems with proportional damping because this damping does not
affect the eigenvectors of the full model [13]. If the damping is
nonproportional, the accuracy of reduced models computed from
these condensation methods is very low. For the iterative schemes,
the dynamic characteristics of the reduced model do not converge
to those of the full model even though these results may converge
[13]. Therefore, the dynamic condensation approaches directly
valid for viscous damping should be developed.

Based on modal reduction method [17], an extended modal
reduction method was proposed by Kane and Torby [18] and ap-
plied to rotor dynamic problems in 1991. However, one difficulty
of the method is that the interested eigenvectors should be calcu-
lated before the dynamic condensation. Three iterative methods
for the model reduction of viscously damped systems were, re-
spectively, proposed by Qu [13,19], Rivera et al. [20], and Qu et
al. [21]. The dynamic characteristics of the reduced models re-
sulted from these methods are usually very close to those of the
full model in a given frequency range. Guyan condensation was
used as an initial approximation in the iterative scheme proposed
by Rivera et al. [20] to improve the accuracy. Very recently the
iterative methods have been extended by Rao [22] to the models
with unsymmetrical structural matrices.

The theory of viscously damped systems is reviewed in Sec. 2.
In Sec. 3, the basic version of the governing equation of dynamic
condensation matrix is derived from the eigenvalue problem in the
state space. Three forms of the reduced model corresponding to
the three state space formulations are defined for the eigenvalue
problems and the dynamic equations of equilibrium. The relations
between two different definitions of dynamic condensation matrix
are shown using the complex modal superposition theory. Several
other versions of the governing equations will also be provided.
Because the governing equations are implicit, it is difficult to
solve for the dynamic condensation matrix directly. The iterative
forms of three of the governing equations are given in Sec. 4. Two
iterative schemes are also provided. The iterative approaches pre-
viously developed are reviewed in Sec. 5. A detailed comparison
of these approaches with the currently proposed method is made
theoretically in this section and numerically in Sec. 6. The advan-
tages of the proposed method will be shown in two practical ap-
plications.
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2 State Space Formulations of Viscously Damped
Systems

2.1 Dynamic Equations of Equilibrium. The dynamic equa-
tions of equilibrium of a viscously damped system with n degrees
of freedom (dofs) can be expressed in a matrix form as

MX(1) + CX(1) + KX(t) =£(¢) (1)

where M, C, and K € R"*" are the mass, damping and stiffness
matrices of the full model. They are assumed to be symmetrical.

f(©) e RV is an external force vector. X(1), X(1), and X(¢) € R"
are the displacement, velocity, and acceleration response vector of
the system.

Introduce the supplemental identity equations

-MX()+MX(1)=0 (2)
Equations (1) and (2) can be rewritten in a compact form as

A'Y(r) - B'Y(r) = F'() (3)
in which A, Bl € R*"2"_Y(1), Y(f), F!(f) € R*" are defined as

K 0 C M X(1)
AI=|:0 M:|’ BI=_|:M 0:|’ Y([):{ },
- X(1)
X(9)

" = {f (’)} @)
X(1) 0

A’ and B! are referred to as state matrices. Clearly, the dynamic
equations of equilibrium (3) are defined in the state space which is
a combination of the displacement and velocity spaces.

If we introduce another supplemental identity, that is,

Y(r) =

KX(1)-KX(1)=0 (5)

the dynamic equations of equilibrium in Eq. (1) may be expressed
in the state space as

A"Y(1) - B"Y(r) = F'(1) (6)

where the state matrices A”, B e R*?" load vector F(r)

e R?" are defined as
0 K K 0 0
A"=[ ] B"=[ . F)= 7)
K C 0 -M ()

Differentiating both sides of Eq. (1) with respect to time once
yields

MX(1) + CX (1) + KX (1) = (1) (8)
The compact form of Egs. (1) and (8) is expressed as

AIIIy([) _ BIIIY(t) — F”I(t) (9)

where the state matrices and vector are given by

Amz[o K], Bmz_[c M]7 F(7) = f(f)} (10)
K C M 0 §i0)

This is the third form of the dynamic equations of equilibrium in
the state space. Due to the symmetry of mass, damping and stiff-
ness matrices, the state matrices shown in Egs. (4), (7), and (10)
are all symmetrical.

2.2 Eigenvalue Problem. The eigenvalue problem corre-
sponding to Eq. (1) is given by
M+ \Cif; + Kifs. = 0, (11a)

in which \; and ¢; € C" are the ith eigenvalue (or complex fre-
quency) and eigenvector. They generally have complex values. It
can be simply verified that if \; and ; is a solution of Eq. (11a),

(i=1,2,...n)
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its complex conjugate pair, )\: and wj, is also a solution of this
equation, that is,

)M, +\,Cf, +Kip, =0, (i=1,2,..n)  (11b)

where the superscript = denotes the complex conjugate. Therefore,
the eigenvalue equation actually has 2n pairs of solution that ap-
pears in conjugate couples.

The compact forms of an eigenvalue problem of the n eigen-
pairs in Egs. (11a) and (11b) are, respectively, expressed as

MYPQ>+ CVYQ +K¥ =0 (12a)

MY (Q)+CP Q +K¥ =0 (12b)

in which the eigenvector matrix W, W* e C"" and eigenvalue
matrix (diagonal) Q, Q" e C"™" are given by

V=[¢ ¢...¢h,]. Q=diag\;,\y,..0N,)  (13a)
W= ... ), Q =diag(\,\5,....\))  (13b)

The compact form of Eq. (12) is given by
MV, Q%+ C¥, Q+KW¥, =0 (14)

where the eigenvector matrix W, € C"*?" and eigenvalue or spec-
tral matrix Q e C*"*?" are defined as

_ .~ [a e
W, =[¥ W), Q:[ } (15)

0
Introduce the supplemental identity:
—-MY QO+ M, Q=0 (16)
The eigenvalue Eq. (14) may be rewritten in the state space as
(17)

The complex conjugate eigenvector matrix W e C2%2 has the

form
_ | w, [ v oow ]
‘P: —~ ~ = * *
7,0 vQ vQ

AN = B Q

(18)
The orthogonalities of the system are given by
VAW =Q, WB¥=I (19)
where I € R?"*?" is an identity matrix.
If the identities
KV, Q-K¥, Q=0 (20)
MY, 0’ + CP, Q%+ K, Q=0 1)

are introduced to Eq. (14), the eigenvalue equations in the state
space become

A'NF = B Q) (22)

A'"F = B"NE (23)

Equations (17), (22), and (23) are the three forms of an eigenvalue
problem of viscously damped models.

3 Dynamic Condensation Matrix and Reduced Models
of the Proposed Method

3.1 Basic Version of Governing Equation. If only the lowest
m groups of eigenpairs are considered in Eq. (23), this equation
can be rewritten as
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A", =B, 0, (24)
In the dynamic condensation, the total dofs (n) of a full model are
divided into the master dofs (masters) (m) and the slave dofs
(slaves) (s). Based on the division, Eq. (24) can be expressed in a
partitioned form as

ath, Al [, | [ s [ |5 o)
PUARYE | V| O

where the submatrices are defined as

ur _ 0 Kmm ur _ HINT _ 0 Kms
A - ’ Ams - (A sm/ T ’

" Kmm Cmm Kms Cms
0 Kss
A§§’=[K c ] (26a)
BIII —_ Cmm Mmm B”[:(B”I T=_ Cms Mms
mm Mmm 0 ’ ms sm Mms 0 s
Cs: Mss
B§§’=—[M 0 ] (26h)
l’I"’ lIImm w;;«,;
I RO G J
\i" ‘I’sm \I’Tm
L, WL, |
N2 anm 0
Qmmz 0 (Q* )2 (26())

Expanding the second equation in the partitioned Eq. (25) pro-
duces

Equation (27) leads to
‘I’sm = (A§ﬂ1)71 (Bgiilq,"lmﬂfnﬂl + Bi_ITI‘I’SmeVHﬂ - Ai{fl‘lfnl)n)
(28)

According to the definition [13], the dynamic condensation ma-
trix of viscously damped systems is given by

\I’SVH = R‘f’mm (29)
The dynamic condensation matrix R € R>**>" represents the rela-
tions of eigenvectors between the masters and slaves. Substituting
Eq. (29) into both sides of Eq. (28) and then postmultiplying its

both sides by the inverse of matrix \I7n1m,

tion matrix is obtained as

the dynamic condensa-

R=(A5) (B, +BIRW,, 0, W, ~A],

(30)

Equation (30) is the basic version of governing equation of dy-
namic condensation matrix.

3.2 Reduced Models. Using the dynamic condensation ma-
trix, the eigenvector matrix \f'm of the full model may be ex-

pressed as
To ‘i}mm I Tr T
lI’"’l = ~ = lI’Vﬂf’i’l = T‘I’mm
) R

sm

31

where T € R¥"*?" is referred to as the coordinate transformation
matrix. Introducing Eq. (31) into both sides of Eq. (25) and pre-
multiplying it by the transpose of the transformation matrix 7" lead
to

Journal of Applied Mechanics

AW, =B, Q8 (32)

Al B e R2"X2™M are the state matrices of the reduced model.
They are given by

AR =T"A"T=Alll +R"A! + Al'R + R"A!/R = R(A" R)
(33a)

By =T"B"T=B" +R"BY + B/'R + R'B/R = R(B"R)
(33b)

Clearly, the state matrices of the reduced model depend upon the
state matrices of full model and the dynamic condensation matrix
R. They are symbolically expressed as SR(A”!,R) and R(B™,R)
respectively. Equation (32) is the eigenvalue equation of the re-
duced model. The corresponding orthogonality equations can be
expressed in the state space as

mm?

(34a)

v Bw,, =1 (34b)
Equations (32) and (34) show that the reduced model (Agl ,Bgl)
computed from Eq. (33) may exactly keep the given m eigenpairs
of the full model if the dynamic condensation matrix, as a result
of the coordinate transformation matrix, is exact.
Similarly, if the transformation defined in Eq. (31) is, respec-
tively, performed on both sides of Egs. (17) and (22), we have

A;?{I}mm = Bé\i}mmﬁmm (35)

in which the state matrices Aé, Bﬁe, Ag, and Bg of reduced model
may be computed by analogy with Eq. (33) and symbolically
given by R(A’,R), R(B',R), R(A",R), and R(B",R), respec-
tively. The orthogonality equations for these two reduced models
are given by

W ARY = Qo (37a)
! B, =1 (37b)
W A, =0, (38a)
v, BV, =1 (38b)

According to the complex modal theory, the state vector Y(r)
may be expressed as

Y(1) = Wq(1) (39)

in which g(r) € C*" are modal coordinates. Generally, it is unnec-

essary to include all modes in the modal superposition. Thus, if

the m eigenpairs are considered, the modal truncated form of Eq.

(39) is rewritten as
Y(1)=W,q,,(1) (40)

where g,,(t) € C*". Using the same division of the total dofs, the
partitioned form of Eq. (40) is given by

{Ym(n } T |
= m [

Y1) ¥, 1

Expanding Eq. (41) leads to two equations

Ym(t) = \i}mmqm(t)’ YS(t) = "i;sﬂ’lq"l(t) (42)

Introducing Eq. (31) into the right-hand side of Eq. (40) and using
Eq. (42) give

(41)
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Y(t)=TW,,q,(t) =TY, (1)

which is equivalent to

(43)

Y (1) =RY (1) (44)

Equation (44) shows that the dynamic condensation matrix also
represents the relation of the responses between the masters and
slaves. This is another physical meaning of the dynamic conden-
sation matrix. However, this relation is approximate due to the
truncation of modes. Because the dynamic condensation matrix
and the coordinate transformation matrix are time independent,
the differentiation of Eq. (43) with respect to time once gives

Y() =TY,,(1) (45)

Inserting Egs. (43) and (45) into Eq. (3) and premultiplying both
sides of the resulted equation by the transpose of T result in

ARY,, (1) - BRY (1) = Fy(1) (46)

Equation (46) is the dynamic equations of equilibrium of the re-
duced model defined in the state space. The equivalent force vec-
tor of the reduced model is defined as

Fi(@)=T"F'(t) = F' (1) + RTF'(1) 47)

If all dofs at which the external loads act are selected as the
masters, the equivalent load vector may be simplified as

Fi(n) =F' (1) (48)

The dynamic equations of equilibrium of the other two cases can
be similarly derived. Generally, the responses computed from Eq.
(46) are very close to those from the full model if the dynamic
condensation matrix is selected properly.

It can be seen from the definitions of reduced state matrices that
the reduced model resulted from the dynamic condensation is de-
fined in the subspace of the original state space. Thus, each coor-
dinate has its physical meaning. It is very convenient to use them
in further dynamic analysis.

3.3 Other Versions of Governing Equations. Postmultiply-
ing both sides of Eq. (34a) by the inverse of matrix ‘f’,nm results in

v, (49)
Premultiplying both sides of Eq. (32) by the inverse of matrix Bk’

glz ﬁZ "I',—I

mm mm

and then postmultiplying by the inverse of matrix 117,,1,,1, one ob-
tains

B Ay =",,00 W, (50)

Using Egs. (49) and (50), the governing Eq. (30) can be rewritten
as

R= A2 B+ BRI, L, AR -] (51)
R= () \B+ BIRBY A - (52

Equations (51) and (52) are also the governing equations of dy-

namic condensation matrix. Only the third form of the state ma-

trices, A’ and B, are included in these two equations.
Postmultiplying both sides of Eq. (37a) by the inverse of matrix

v, .., results in
T Al — O !
v, Ar=Q, ¥

mm

(53)

Premultiplying both sides of Eq. (35) by AR(B%)~" and with con-
sideration of this equation, one has

AQ(BL)_IAL{I;mm = Ageq’}mmﬁmm = B;‘Fnl’nﬁ;m (54)
Thus, we have the relation

Introducing Egs. (53) and (55) into Eq. (30) produces
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R=A0) "B, +BIRW,, 0, ¥, Ap-AG]  (560)

sm

R= (A (Bl + BUR)(BR AR -Al]  (57)
Equations (56) and (57) are two governing equations based on the
first and third forms of the state matrices. Two forms of state
matrices are used in each of these two governing equations. Thus,
they are referred to as hybrid governing equations of dynamic
condensation matrix. Similarly, another two hybrid governing
equations using the second and third forms of the state matrices
are given by
R=A) "By, +BRV,, 0, ¥ AL-A]]  (58)

mm

R=AL[(BY +BIR)((BR) AR - AL (59)

4 Iterative Schemes for Dynamic Condensation Ma-
trix

It can be seen from the preceding section that the reduced
model fully depends on the dynamic condensation matrix. A series
of governing equations have been derived for the dynamic con-
densation matrix. Because these equations are implicit, it is very
difficult to solve them directly. The iterative forms of Egs. (30),
(51), and (52) are given by

RO = (A7) 7By, + BIRV)W V(O () - A

(60)

R(i) — (qul)_ll.(B”[ +Bgle(i—l))"I",E:;;ll)(\'l‘,(i—l))T(A%I)(i—l) _AIIIJ

sm mm sm-

(61)

RO = (A (B + B ) (B ) Al 0 -t
(62)

where i=1,2,3,.... The initial approximation of the dynamic
condensation matrix is given by

RO =—(AM)1AY (63)

For concise purpose, the iterative forms of hybrid governing equa-
tions are not provided. It can be proven that the dynamic conden-
sation matrix computed from Egs. (60) or (61) has real values
although the matrices with complex values are used on the right-
hand sides of the two equations.

Obviously, when an iterative scheme is utilized to solve Eq.
(60), the reduced state matrices as well as the eigenvalue matrix,
eigenvector matrix and its inverse of the reduced model should be
calculated at every iteration. Because the eigenproblem analysis
of the viscously damped model is usually time consuming the
solution time used in the iteration will rise rapidly as the dimen-
sion of the reduced model increases. The governing Eq. (61) is a
little better than Eq. (60) because there is not any matrix inverting
process. To reduce the computational work, an alternative govern-
ing equation is given in Eq. (62). Because the eigenvectors and
eigenvalues of reduced model are not included in this governing
equation, it is unnecessary to compute the reduced eigenproblem
during every iteration. Consequently, if the solution of the reduced
eigenproblem is required at each iteration, governing Eq. (61) is a
better selection, or Eq. (62) is better.

4.1 [Iterative Scheme I. The major iterative steps for govern-
ing Eq. (61) are listed below.

(1) Rearrange the matrices A’ and B" according to the divi-
sion of the masters and slaves; or formulate the submatrices
HI 4 I gl plll plll 11 . .
A Ao Asss B B’{ﬁ’ an(}”l.’?&Y according to Eq. (26);
(2) Factorize the matrix A o LA =LDL”, where L is a low
triangular matrix with all diagonal elements equal to zero;

D is a diagonal matrix;
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(3) Calculate the initial approximation of dynamic condensa-
tion matrix R in Eq. (63);

(4) Compute the initial approximation of the reduced state ma-
trices (A4 and (BE)© and the eigenpairs \f'i,?;, ﬁisr)n
and

(5) For i=1,2,3,..., begin the iteration as follows: (a) Com-
pute the ith approximation of the dynamic condensation
matrix in Eq. (61); (b) Calculate the reduced state matrices

(i)

mm and

(A (B and the corresponding eigenpairs W

o, (c) Check the convergence of the iteration using the

mm’ - . A

criterion |(a](.’)—a;’_l))/aj(.’)| <e, (j=1,2,...,p<m) in
which « denotes the damping ratio and damped frequency
of the complex frequencies (eigenvalues), respectively. The
complex frequencies are the diagonal elements of the ma-
trices ﬁx:nl) and ﬁf:l)m, respectively. € is a given error tol-
erance. If the given p complex frequencies are convergent,
exit the loop.

(6) Output the results R=R", AﬁeH:(AgI)("), Bgl=(BgI)(i) and
compute the reduced state matrices (Afe,Bfe) or (Ag ,Bg).
Compute the eigenvectors at the slaves using Eq. (31) if
necessary.

4.2 TIterative Scheme II. The major iterative steps for the
governing Eq. (62) are listed below. Steps 1 through 4 are similar
to those in Scheme I;

(5) For i=0,k,2k,...(k=1), begin the iteration as follows: (a)
Iterate Eq. (62) for k times and obtain the matrix RU*¥; (b) Cal-
culate the reduced state matrices (A%)*), (Bi')*%) and the cor-
responding eigenpairs ‘173;;() and ﬁ,(:l;k); and (c) Check the con-
vergence of the iteration using the criterion: |(a§l+k)—ay))/ a;'+k)|
<g, (j=1,2,...,p<m). If the given p complex frequencies are
convergent, exit the loop.

(6) Output the results R=R™*0), A= (AU i+0) - glll_ (gl (i+k)
and compute the reduced state matrices (A’ ,B;) or (Ag ,Bﬁe’).
Compute the eigenvectors at the slaves using Eq. (31) if
necessary.

In this iterative scheme, when the integer k is larger than 1, k
—1 times calculation of the reduced eigenvalue problems is
avoided. This makes the scheme more computationally efficient.

In the earlier two iterative schemes, the damping ratios and
damped frequencies are used to check the convergence of the
reduced model. If the errors of the damping ratios and damped
frequencies resulted from the reduced models in the two succes-
sive iterations are less than the error tolerance, we say the reduced
model is close to the full model at that frequency range. This
conclusion is generally guaranteed. Another advantage of the con-
vergent criterion is that the by-products, damping ratios and
damped frequencies, are usually of interest in dynamic analysis.
Of course, another parameter such as dynamic condensation ma-
trix itself may be used as a measure for the convergence.

5 Comparison With Other Iterative Approaches

5.1 Other Iterative Methods. The efficient iterative ap-
proaches for the dynamic condensation of viscously damped mod-
els were developed by Qu [13,19], Rivera [20], and Qu et al. [21].
The iterative form of governing equation derived by Qu [13,19],
referred to method I, from the dynamic equations of equilibrium is
given by

R = (A7)'L(B],, + BLRY )W) (A7) ) - A7)
R(IO) == (Ais)71A£n1

(64)

or
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R =(A) (B, + BLRY) (B ") (AR - AL, ]
R(IO) == (Aés)_lAgm

(65)

The state matrices in Egs. (64) and (65) may be expressed as

%(AI,R(li_l)) and m(B’,R(li_l)). Rivera’s, referred to as method II,

iterative equations were developed from the eigenvalue equations

of the full model. Using the denotations in this paper, the iterative
form of the governing equations can be expressed as

R = (A1) (B!

sm

RO = R; 0
0 R;

+B;vng_]))li;(i_l)(\’I}(f—l))T(A;?)(FI) _AI J

mm mm Sm-

(66)

in which RG=—K;VIKX,,, is the Guyan condensation matrix of un-
damped models.

An alternative iterative approach was developed by Qu et al.
[21], referred to as method 111, to improve the convergence of the
iterative schemes in Eqgs. (64) or (65). The iterative form is given
by

RS = (A5)" (B, + BERS WU D) (AR ) - AT
RY =—(Al)DAl

sm

(67)

or

sm sm

Rgi) — (Ag)—l[(Bll +B§I (31—1))((35?1 (i—l))—l(Ag)(i—l) —A” ]
RO =— (AT,

(68)

The state matrices in Egs. (67) and (68) are given by SR(A” ,Rg_l))
and R(B",R{™").

5.2 Comments on Convergence. Generally, starting vector
and convergent rate are two important features of an iterative
dynamic condensation approach. In the following the present it-
erative method will be compared with the approaches in Refs.
[13,19-21] from these two viewpoints.

The governing equation of dynamic condensation matrix in
methods T and 1T are actually the same as shown in Egs. (64) and
(66). Using Eq. (4), the initial approximation in Egs. (64) and (65)
is given by

-KK,, 0 R; 0
T I L
0 -M'M,, 0 Ry
(69)

With the introduction of Eq. (69) into Eq. (29) and consideration
of the partitioned form of eigenvector matrix, shown in Eq. (26¢),
we have

‘I’sm ‘I'?m |:RG 0 :| lI’mm \I’:nm
‘I’smﬂmm q’;(mﬂx - 0 RM ‘Ilmmnmm ‘I’;‘nm()yr

mm mm

(70)
Expanding Eq. (70) gives
q’sm = RG‘I’mm > (7 la)
lI’sm‘(l'mm = RMII’mmﬂmm (7 lb)
q’:m = RGlpzzm’ (7261)
‘I’:mﬂ:zm = RM\anmQ:nm (72b)

Clearly, the two equations in Egs. (71) and (72) are, respectively,

SEPTEMBER 2005, Vol. 72 / 765



Table 1

Lowest five damping ratios and damped frequencies (rad/s)

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Ratio 0.02740 0.13041 0.02368 0.03875 0.05394
Freq. 1.07187 1.07709 3.23865 5.38783 7.52560

contradictive. Thus, this initial approximation is unreasonable.
The initial approximation used by Rivera [20] gives the follow-
ing relations:

W, =R;W¥,,. (73a)
W, 0 =R, L (73b)

W, =RV, . (74a)
v Q' =R;W¥, Q (74b)

They are consistent to each other. Thus, this approximation has
higher accuracy than that in Egs. (64) and (65). This will be
shown in the numerical examples.

Using Eq. (7), the initial approximation in Egs. (67) and (68)
are given by

1 —1
Rg()) - |:_ K\ CssKss K.ys :| |:

0 K]

KS_S] 0 Ksm Csm
|~ K;lesm K;sl CssKs_lesm - K;sl Csm (75)
0 - Irslesm

As one knows, the norm of the damping matrix is usually much
smaller than that of the stiffness matrix. Thus, one has

Ik C KK, - K[ Cl < KK, (76)

Therefore, the inconsistency and contradiction in the initial ap-

proximation R(30) are much lighter than those in R(IO). Moreover, if

the damping matrix is proportional to the stiffness matrix, Rgo) is
identical to R;O). Since the state matrices A’ has the same form of
the state matrix A"’ as shown in Eqs. (7) and (10), the initial
approximation of dynamic condensation matrix used in Egs. (67)
and (68) are identical to that used in the proposed method.

A full proof of the convergence of the present iterative method
and those in Refs. [19-21] is very complex. Fortunately, the con-
vergence of an iterative dynamic condensation approach of un-
damped models, called iterative improved reduced system, has
been proven by Friswell et al. [23]. The convergent rate is ap-
proximately in the order of X\;/\; [23] at the first several itera-
tions. j denotes the jth eigenvalue of full model. k£ runs over the
modes that are not included in the reduced model. It can be simply
verified that the iterative approaches of damped models aforemen-
tioned have very similar convergent features.

The governing equations of dynamic condensation matrix in
methods I and II are the same and they are based on the same
eigenvalue equation, i.e., Eq. (17). Of course, they have the same
convergent rate. Therefore, although the unreasonable initial ap-
proximation is used in method I, it has been shown and will be
shown later that the reduced models resulted from these two ap-
proaches are very close after several iterations.

Method III is based on eigenvalue Eq. (22) which has the same
eigenvalues as those in Eq. (17). Therefore, this approach has the
same order of convergent rate as that in methods I and II at the
first several iterations. Research shows [21] that this approach
converges much faster than methods I and II after several itera-
tions. The initial approximation used in this method is shown in
Eq. (75) which is very close to the approximation in Eq. (66).

The present iteration scheme is based on eigenvalue Eq. (23). It
has quadratic eigenvalues of the real model. Thus, the convergent
rate is in the order of (\;/\;). The initial approximation is the
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same as that defined in Eq. (67). Therefore, this approach is ex-
pected to be convergent faster than the three iterative approaches
previously proposed.

It is necessary to note that all four iterative approaches afore-
mentioned have very similar iterative formats, the computational
efforts required for each iteration of these methods is very close.

6 Applications

The iterative methods given in Secs. 4 and 5 will be tested on
two practical dynamic systems which have been used in Refs.
[19,21]. The details of these two examples may be found in any of
these two references and will not be iterated herein. In these two
examples, if the frequencies and eigenvectors (mode shapes) re-
sulted from the reduced model is close to those of the full model,
we will say that the reduced model are close to the full model
within that frequency range.

6.1 40-Story Building With Tuned Mass Damper (TMD).
The lowest five damping ratios and damped frequencies resulted
from the full model are listed in Table 1 for comparison purposes.
Six cases, shown in Table 2, for the dynamic condensation of the
full model will be considered. In case 1, for example, Egs. (64) or
(65) is used to compute the dynamic condensation matrix and
R(A!,RD) and R(B!,RY) are used to calculate the reduced state
matrices from which the corresponding eigenpairs of the reduced
model are obtained.

The dofs pertaining to the 10th, 20th, 30th, 40th floors and
TMD are selected as the masters when the dynamic condensation
approaches are applied to the tall building. The relative errors of
the five damping ratios and damped frequencies of the reduced
models are listed in Tables 3—12. Ten iterations are considered for
the reduced model. “-” in these tables indicates that the relative
error is less than 5X 107°. The convergent features of the eigen-
vectors are not shown because they are very similar to those of the
damped frequencies and this takes lots of space.

The reduced models obtained from all four iterative approaches
are convergent to the full model after sufficient iterations. Several
iterations are enough to compute the lower order of eigenpairs.
For example, the first and second damped frequencies in the first
approximation are accurate enough for engineering applications.
One or two iterations are also enough for the accuracy of these
two damping ratios.

Due to the contradiction of the initial approximation used in
case 1, the accuracy is generally very low. Most of the relative
errors are greater than one as shown clearly in Tables 3—-12. They
are reduced significantly after the first or the second iteration. The
results in these tables show that this iterative scheme converges

Table 2 Six cases considered in the first example

Cases Condensation matrix Reduced state matrices
1 Eqs. (64)/(65) R4, RD), R(B',RY)
2 Egs. (66) R(A!,RD), R(B',RD)
3 Egs. (67)/(68) R RY), R(B",RD)
4 Egs. (61)/(62) R(AM RD), R(B" RD)
5 Egs. (61)/(62) R(A',RD), R(B',RD)
6 Egs. (61)/(62) R(A",RD), R(B" RY)
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Table 3 Relative errors of the first damped frequency

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 0.00942 0.00412 0.00412 0.00696 0.00412 0.00412
1 0.00412 0.00002 0.00004 - - -
2 0.00002 0.00001 - - - -
4 0.00001 - - - - -

although the accuracy of the initial approximation is very low.

The accuracy of the initial approximation based on Guyan con-
densation matrix is much higher than that in case 1, especially for
the second through fifth damped frequencies and the third through
fifth damping ratios. However, the difference reduces with the
increase of number of iterations. After several iterations, the ac-
curacy of the reduced models resulted from these two iterative
methods, methods I and 1II, is very close.

The relative errors of the initially approximate eigenpairs in
case 3 are the same as those in case 2 because the damping matrix
in this example is almost proportional to the stiffness matrix. Gen-
erally, the iterative approach in case 3 converges faster than the
approach in case 2. However, this is not true for the fifth damping
ratio of the reduced model as shown in Table 12.

The proposed iterative method converges much faster than the
three iterative schemes in cases 1-3. The relative errors of the
eigenpairs resulted from the former are generally less than one
tenth of those resulted from the latter three methods. As antici-

pated, the reduced models in cases 4, 5, and 6 have very close
accuracy. Due to this, the latter two cases will not be considered in
the second example.

6.2 Floating Raft Isolation System. The isolation system has
a total of 179 dofs. The lowest 15 frequencies are listed in Table
13. They are considered as exact for comparison purposes. The
modal damping matrix, which is transformed by the lowest five
undamped modes, is listed in Table 14. It can be seen that the
maximum off-diagonal elements are very close to or greater than
the corresponding diagonal elements in the lowest three modes.
Therefore, the nonproportionality of damping is heavy.

The lowest ten eigenpairs are of interest. As we know the ratio
of the number of masters to the number of modes interested is
generally between 1 and 2 [13]. The ratio is selected as 1.5, that is,
the number of masters is 15. The dofs associated with the two
machines and the translational dofs at nodes 1, 7, 15, 17, 19, 21,
29, 35 in raft and at nodes 7, 8, 9, 10, 16 in base are selected as

Table 4 Relative errors of the second damped frequency

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.85339 0.00207 0.00207 0.00075 0.00207 0.00207
1 0.00207 - 0.00002 - - -
2 R - R - - R

Table 5 Relative errors of the third damped frequency

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.71425 0.05433 0.05433 0.05433 0.05433 0.05433
1 0.05433 0.00176 0.00205 0.00009 0.00008 0.00010
2 0.00176 0.00067 0.00040 - - -
4 0.00047 0.00035 - - - -
6 0.00026 0.00020 - - - -
8 0.00015 0.00012 - - - -
10 0.00009 0.00007 - - - -

Table 6 Relative errors of the fourth damped frequency

Tteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.49221 0.13902 0.13902 0.13902 0.13902 0.13902
1 0.13902 0.01816 0.02009 0.00362 0.00331 0.00394
2 0.01816 0.00680 0.00839 0.00039 0.00032 0.00046
4 0.00378 0.00249 0.00068 0.00001 0.00001 0.00001
6 0.00176 0.00128 0.00006 - - -
8 0.00095 0.00072 0.00001 - - -
10 0.00055 0.00042 - - - -

Table 7 Relative errors of the fifth damped frequency

Tteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.18343 0.16483 0.16483 0.16483 0.16483 0.16483
1 0.16483 0.05496 0.05854 0.03288 0.03189 0.03385
2 0.05496 0.03587 0.03986 0.01426 0.01322 0.01528
4 0.02412 0.01644 0.01729 0.00314 0.00269 0.00360
6 0.01155 0.00829 0.00784 0.00082 0.00067 0.00097
8 0.00609 0.00456 0.00367 0.00023 0.00018 0.00028
10 0.00346 0.00266 0.00178 0.00007 0.00005 0.00008
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Table 8 Relative errors of the first damping ratio

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 4.35952 3.72752 3.72752 0.03491 3.72752 3.72752
1 3.72752 0.00013 0.00371 0.00001 - 0.00002
2 0.00013 0.00006 0.00002 - - -
4 0.00004 0.00003 - - - -
6 0.00003 0.00002 - - - -
8 0.00002 0.00001 - - - -
10 0.00001 0.00001 - - - -

the masters. The former four cases in Table 2 are considered in
this example. They are denoted by A, B, C, and D, respectively.
Since higher modes generally converge more slowly than the
lower modes, only the higher five damping ratios and damped
frequencies are considered to check the convergence. The relative

Table 9 Relative errors of t

errors of the damping ratios and damped frequencies of the re-
duced models resulted from these four iterative schemes are plot-
ted in Figs. 1 and 2.

The damped frequencies of the reduced models approach to
those of the full model steadily with the implementation of itera-

he second damping ratio

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 0.78947 0.78254 0.78254 0.00662 0.78254 0.78254
1 0.78254 0.00002 0.00005 - - -
2 0.00002 0.00001 - - - -
4 0.00001 0.00001 - - - -
6 - R - - R R

Table 10 Relative errors of the third damping ratio

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.70258 0.05672 0.05672 0.05672 0.05672 0.05672
1 0.05672 0.00170 0.10333 0.00330 0.00005 0.00665
2 0.00170 0.00012 0.00426 0.00008 - 0.00016
4 0.00010 0.00010 0.00005 - - -
6 0.00008 0.00006 - - - -
8 0.00005 0.00004 - - - -
10 0.00003 0.00002 - - - -

Table 11 Relative errors of the fourth damping ratio

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.49350 0.14210 0.14210 0.14210 0.14210 0.14210
1 0.14210 0.01735 0.23383 0.02711 0.00259 0.05589
2 0.01735 0.00616 0.02546 0.00471 0.00002 0.00941
4 0.00339 0.00185 0.00362 0.00013 0.00001 0.00024
6 0.00108 0.00069 0.00051 - - 0.00001
8 0.00048 0.00035 0.00007 - - -
10 0.00026 0.00020 0.00001 - - -

Table 12 Relative errors of the fifth damping ratio

Iteration Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0 1.18903 0.16744 0.16744 0.16744 0.16744 0.16744
1 0.16744 0.05400 0.16806 0.01446 0.03050 0.05722
2 0.05400 0.01575 0.01988 0.02146 0.00838 0.05012
4 0.00393 0.00463 0.01907 0.00902 0.00205 0.01588
6 0.00803 0.00896 0.01225 0.00316 0.00171 0.00460
8 0.00817 0.00697 0.00758 0.00111 0.00084 0.00139
10 0.00567 0.00455 0.00472 0.00039 0.00035 0.00044

Table 13 Lower 15 damping ratios and frequencies of the isolation system (rad/s)

Mode Ratio Freq. Mode Ratio Freq. Mode Ratio Freq.
1 0.01216 27.4784 6 0.02818 238.643 11 0.00331 698.030
2 0.01478 30.7270 7 0.02230 335.931 12 0.00779 783.472
3 0.00477 67.4671 8 0.03093 418.320 13 0.02380 1051.91
4 0.02850 226.759 9 0.03348 533.934 14 0.02292 1124.94
5 0.04282 227.902 10 0.03021 542.827 15 0.00098 1244.86
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Table 14 Modal damping matrix

.668501E+00
—.473408E-01
—.531268E+00
—.178491E+00
—.393805E+00

—.473408E-01
.908089E+00
—.315532E+00
.396007E+00
—.217935E+00

—.531268E+00
—.315532E+00
.643560E+00
—.640672E-02
.140491E+01

—.178491E+00
.396007E+00
—.640672E-02
.128987E+02
.845864E—-02

—.393805E+00
—.217935E+00
.140491E+01
.845864E-02
.195278E+02

tion as shown in Fig. 1. The convergence is very fast at the first
several iterations. After that, the convergence becomes much
slower. Particularly, the relative errors of the damped frequencies
computed from cases A and B reduce very slowly after several
iterations, five for example. The error curves A and B are almost

horizontal after that. Therefore, very small error tolerance for the
damped frequency is required in the iterative scheme I in Sec. 4.1.
It could be slightly big in iterative scheme II in Sec. 4.2. For both
iterative schemes, a large number of iterations is usually necessary
if the accuracy of interest is high. These problems do not happen
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Fig. 1 Comparison of relative errors of damped frequencies: (a) sixth damped frequency; (b) seventh damped frequency; (c)

eighth damped frequency; (d) ninth damped frequency; and (e) tenth damped frequency
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Fig. 2 Comparison of relative errors of damping ratios: (a) sixth damping ratio; (b) seventh damping ratio; (c) eighth damping

ratio; (d) ninth damping ratio; and (e) tenth damping ratio

in cases C and D.

Although the relative errors of the damped frequencies of the
reduced model resulted from case B are much smaller than those
from case A at the first several iterations, they are very close in the
following iterations. The reason is that both iterative approaches
are based on the same governing equations of the dynamic con-
densation matrix. The initial approximation of the dynamic con-
densation matrix may make the two schemes different at the first
several iterations. However, the final results should be very close.

The accuracy of the damped frequencies obtained from case C
is higher than that of cases A and B after several iterations. This
means that the advantages of the iterative method in case C only
can be shown after these iterations. Except the initial approxima-
tion, the proposed method has much higher accuracy than all these
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three iterative approaches.

The convergent properties of the damping ratios shown in Fig.
2 are not as clear as those of damped frequencies, although they
are generally similar. Therefore, it is better to select the damped
frequency as the major parameter to check the convergence and
the damping ratio as the minor.

7 Conclusions

An accelerated iterative method for the dynamic condensation
of viscously damped models has been developed. Three groups of
governing equations for dynamic condensation matrix were de-
rived from the eigenvalue equations defined in the state space.
Two iterative schemes for solving these governing equations were
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provided. A detailed comparison of the present method with three
approaches previously proposed was presented. Two numerical
examples were included to show the convergent features of each
iterative method.

Based on different supplemental identities, three state space for-
mulations for the dynamic equations of equilibrium and eigen-
value problems of viscously damped models were provided. It has
been shown that although these three formulations are very simi-
lar, the convergent features of the corresponding iterative methods
are different.

Two definitions for the dynamic condensation matrix of vis-
cously damped models were reviewed. They represent the rela-
tions of eigenvectors and the state vector between the masters and
the slaves, respectively. The relations between these two defini-
tions have been demonstrated using the complex modal superpo-
sition theory. If the proper modal truncation scheme is applied, the
two definitions become the same.

The reduced models obtained from all four iterative approaches
are convergent to the full model after sufficient iterations. Several
iterations are enough to compute the lower orders of eigenpairs.
The convergence is very fast at the first several iterations. After
that, the convergence becomes much slower.

Due to the strong contradiction in the initial approximation of
dynamic condensation matrix used in iterative method I, the ac-
curacy is generally very low. Most of the relative errors are
greater than 1. Fortunately, the low accuracy of initial approxima-
tion does not affect the convergence. The accuracy of the initial
approximation based on Guyan condensation matrix, used in the
iterative method II, is much higher. However, the difference re-
duces with the increase of number of iterations. After several it-
erations, the accuracy of the reduced models resulted from these
two iterative methods are very close. Generally, the iterative
method III converges faster than the two approaches, methods I
and II. The proposed iterative method converges much faster than
the earlier three iterative algorithms.

Due to the very slow convergence of methods I and II after
several iterations, very small error tolerance for the damped fre-
quency is usually required in the iterative scheme 1. For this case,
the iterative scheme 2 is better than iterative scheme 1. The con-
vergent properties of the damping ratios are not as clear as those
of damped frequencies, although they are generally similar. There-
fore, it is better to select the damped frequency as the major
parameter to check the convergence and the damping ratio as the
minor.
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A thin plate resting on a Winkler elastic foundation subject to a moving harmonic load
can be used as the model for highway and airport pavement under moving vehicle load
and many other applications. The study of dynamic response of the plate thus becomes
very important. In this paper we study the dynamic displacement of a plate caused by a
moving harmonic line and point load. The solution is represented by the convolution of

dynamic Green’s function of plate. An approximate relationship between critical load
velocity and critical frequency is established analytically. It is found that the maximum
displacement response occurs at the center of the moving load and travels at the same
speed with the load. [DOI: 10.1115/1.1993669]

1 Introduction

Dynamic response of a thin plate subject to a moving load is a
very important problem not only to pavement design [1-5], but
also to other applications such as optimum vehicle suspension
design [6,7]. To prevent the stress applied by a moving vehicle
exceeding a certain level on a landmine, it is paramount to know
the dynamic displacement and stress field caused by a moving
load. Measured pavement dynamic response information can also
be used for pavement nondestructive evaluation [8—10]. In Ref.
[11] the full-scale force-vibration test resulted from a moving load
is used to evaluate the before and after effect of bridge structure
repairs.

The most significant difference between static theory and its
dynamic counterpart is that inertial effect plays an important role
in the latter case [12]. To better understand the dynamic response
of a thin plate to a moving load, it is indispensable to analyze the
dynamic effect of an impulse loading on a plate. Finite element
procedures have been developed to carry out the response of a
thin plate to dynamic loads with applications in airport design and
pavement nondestructive testing and evaluation [3,13-15].
Kennedy [16] studied the steady-state response of a moving load
on a beam on elastic foundation. Regarding analytical solutions,
Deshun [17] applies the vibrational principle to solve the vibration
of thick plates. The vertical vibration of an elastic plate on a
fluid-saturated porous half space subjected to a harmonic load is
investigated by Bo [18], in which Hankel transform is used to
convert the governing equation to Fredholm integral equation of
the second order and numerical calculation can then be carried
out. The monograph by Fryba [19] contains a large body of work
on moving load problem and establishes an extensive bibliogra-
phy in this field.

This paper studies dynamic displacement of a thin plate caused
by a moving harmonic load. The remainder of this paper is orga-
nized as follows. In Sec. 2, the governing equation is developed.
In Sec. 3 the Green’s function is obtained as a fundamental solu-
tion to construct dynamic response of the plate to moving har-
monic loads. In Sec. 4, dynamic displacement of plate is estab-
lished based on the convolution of the Green’s function over time
and space. In Sec. 5 the characteristic function of the thin plate is
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investigated. In Sec. 6 maximum response and condition under
which resonance may occur are analyzed. The concluding remarks
are made in Sec. 7.

2 The Governing Equation

Suppose that a thin plate is setting in an orthogonal x-y-z coor-
dinate system. Denote W(x,y,7) the displacement of the plate in z
direction. Let x=(x,y,?) be the spatial and temporal coordinate.
Three assumptions are often made to simplify mathematical de-
scription of the plate: (1) the strain component &, in the perpen-
dicular direction of the plate is sufficiently small such that it can
be ignored; (2) the stress components 7, 7, and o, are far less
than the other stress components, therefore, the deformation
caused by 7., 7, and o, can be negligible; and (3) the displace-
ment parallel to the horizontal direction of the plate is zero. Under
these assumptions, the well-known partial differential equation
governing the displacement of the Kirchhoff plate on an elastic
Winkler foundation is given by [3,15,16,20-23]

DV>V>*W(x) + KW(x) + ph%W(x) =F(x) (1)

where F(x) is the impressed force, V2=¢?/dx>+/dy* is the
Laplace operator; D=Eh3/[12(1-1?)] is the stiffness of the plate;
h is thickness of the plate, p is density of the plate; E is Young’s
modulus of elasticity, v is Poisson ratio of the plate, and K is the
modulus of subgrade reaction and is assumed to be constant to
represent linear elasticity of the subgrade.

3 The Fundamental Solution

According to the theory of mathematical-physical equation, the
fundamental solution of a partial differential equation is given by
the Green’s function, a solution corresponding to the situation
where the right-hand side of Eq. (1) is in the form of the Dirac-
delta function [24]

F(x) = 8x - xo) ()

where x¢=(xg,y¢,%) represents the source position in space and
time; S(x—Xg) = 8(x—x0) 8(y—yy) 8t—1y) and &(-) is the Dirac-delta
function, defined by

f (x = xo) f(x)dx = f(xo) 3)

Define the three-dimensional Fourier transform pair

FOF[fx)]= J f J J(x)exp(- iéx)dx (4a)
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fx)=F[f(§]=2m)3 f f f f(Oexpligx)de  (4b)

where é=(&,7,w), F[-] and F~![-] are Fourier transform and its
inversion, respectively. To solve for Green’s function, apply Fou-
rier transform to both sides of Eq. (1)

D(&+ 772)25(5;"0) + Ké(fﬂ‘o) - Phwzé(§§x()) = i':(f) (5)

in which F(£) is the Fourier transform of F(x), and the displace-
ment response W(x) is replaced by the notation G(x;%,) to indi-
cate the Green’s function. In the derivation of Eq. (5) the follow-
ing property of Fourier transform is used

F[/"(1)]= (iw) "F[(1)] (6)

Also F(&), the representation of F(x) in the frequency domain can
be obtained by taking Fourier transform of both sides of Eq. (2)

F(&)= f f J 8(x — xg)exp(— iéx)dx = exp(— i¢xy) (7)

Here, the property of the Dirac-delta function, i.e., Eq. (3), is
utilized in for evaluating the above integral. Substitute Eq. (7) into
Eq. (5) and rearrange terms give

G(fﬂ‘o) =exp(- iéx))[D(& + 7)* + K — pho?]™! (®)

The Green’s function given by Eq. (8) is in the frequency domain
and can be converted to the time domain by taking the inverse
Fourier transform

G(X;Xo)=(2ﬂ)'3D'1f f J expl(i&x - x0)[[(€ + 7)* + K

-] dé )

where K=K/D, m=ph/D. Equation (9) is the Green’s function of
a plate resting on a Winkler elastic foundation. It serves as a
fundamental solution of a partial differential equation and can be
very useful when dealing with linear systems.

4 Dynamic Response to Moving Harmonic Load

According to the theory of linear partial differential equation,
the dynamic response of a slab to an external load F(x) can be
constructed by integrating the Green’s function in all dimensions

[24]
W(X)=J f f F(x0)G(x:X0)dx,

For a moving point load, F(x) can be expressed as

F,(x) = P&(y) 8(x — vt)exp(iQi)

For a moving line load, F(x) can be expressed as

(10)

(11)

F/(x) = (2r) ' PSO)[H(x — vt + 1) — H(x — vt — 1) Jexp(iQ)
(12)

where P is the magnitude of the load; v the load velocity; r, the
half length of the line load; H(x) the Heaviside step function,
defined as H(x)=1 for x>0, H(x)=0 for x<0, and H(x)=1/2 for
x=0.

The case of moving point load will be considered first. The
dynamic displacement response of the slab under a moving point
load can be given by Eq. (10) in which the load F(x) is replaced
by Eq. (11)

Journal of Applied Mechanics

W,(x) = Pf f f Ayo) 8lxg = vto)exp(i€2t) G(x;x)dX

(13)

Applying the properties of Dirac-delta function as showed in Eq.
(3), the earlier equation becomes

t
W,(x) = Pf exp(iQity) G(x; uty,0,10)dty (14)

Substituting the Green’s function Eq. (9) into Eq. (14) and per-
forming some mathematical manipulation, the displacement of the
slab becomes

] [ ]

o X1 explilE0x = vto) + 7y + wlt —10) ]
Q@&+ 7) + K - imw’]

dédt,

(15)

where P=P/D. Substituting Eq. (3) and [', exp[—i(vé+w
- W)tpldty=278(vé+ w—Q) into Eq. (15) give

W,(x) = (2m)72P exp(iQ)
c (e i[E(x - vr) +
y J f expllée—w) +ml}
o d o (B4 )P+ K- (Q — vé)?
For a moving line load substituting Egs. (9) and (12) into Eq. (10)
and performing similar mathematical manipulation, we have

(16)

W(x) = (2m) 2P exp(i1)

" f : J " _sin &y explil (= w) + oy}
o (€4 o7 + K =i - v8)]

(17)
In the derivation of Eq. (17) the Euler formula exp(is)=cos s
+isins and the following integral is used

fx [H(xo— vt + ry) = H(xg — vr = rp) Jexp(= igxo)dx
2r

0

—o0

_ sin §ry exp(= iévr)
- &ro

Because a moving point load is a special case of a moving line

load, we should be able to derive Eq. (16) from Eq. (17) as a

limiting case. Note that lim (sin &ry/ érg)=1, it is straightforward
ro—0

to verify this corollary by taking the limit on both sides of Eq.

(17).

0 (18)

- f "0 exp(= igxy) I

-1 2r

5 Characteristic Equation and Analytical Displace-
ment

Dynamic displacement response of a plate to a moving line load
is significantly affected by the denominator of the integrand in Eq.
(17). Define characteristic equation of the plate as

W& =(E+ 7 +K-m(Q-v§ =0

Four zeros of this equation are
78 = (@)= E@)mQ - v’ - K"}, j=1,...4 (20)
It should be noted that here we require £ to be real valued. To

evaluate Eq. (17), complex theory is adopted, and therefore, these
four roots of the characteristic equation become poles in the 7

(19)
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plane. We construct a closed contour to surround these poles. For
7=0 we select the closed contour in the upper half 7 plane, while
for 7<<0 the lower half 7 plane. Only the case of <0 is pre-
sented here due to limitation of paper length. The case of =0
can be derived in a similar way. Appling the theorem of residue to
Eq. (17) gives dynamic displacement response of a plate subject
to a moving line harmonic load

W(x) = (2m) 2P exp(iQt)f expli&(x — ur)]

) { sin &ry exp(iny) }
X4 2770 res —
Im(7)>0 Ergl(&+ )7 + K= m(Q - vé)?]
i 2 res|: sin &ry eip(”/)’) }
(=0 | &ro[(&+ 7)) + K- m(Q - vé)*]

%

= (8w liPexp(i) D
Im(‘r]/-)>0 —%
y sin £rg exp[i&(x — ur) Jexplin,(§)y]
Eron (&)l (9) + €]

where res(+) stands for residue [25].
To evaluate Eq. (21) one needs to deal with another character-
istic equations

d§ 21

Erom(Om (& + £]=0 (22)
Clearly é=0, or 7,(§)=0, or 77]2-(§)+§2=0 could all lead to the
existence of Eq. (22). According to Eq. (19), n?(§)+§2=0 is
equivalent to K —7i(Q—v€)?=0, resulting two first-order poles in a
complex & plane, i.e., & ,=[Q=(K/m)"*]/v. To seek for zeros of
7;(§)=0, note that the application of the theorem of residue in Eq.
(21) implies that £ has to be real in the first place.

With this constraint in mind, one needs to identify two real
roots from the equation 7;(£)=0 or equivalently

& - mr& +2mQéE—mQ*+K=0 (23)
To understand the nature of this characteristic equation, define two

quantities S,=K-m0? and S_=K-m(Q%+v*/4). Furthermore,
define two functions

F1(d =& -mvr& —mO? + K= (& - m?2)> + K —m(Q* +1'/4)
(24)

(&) =—2muLé (25)

Equation (23) is identical to f,(&)=f>(§). In order to analyze the
effect of various parameters on characteristic Eq. (23), it is nec-
essary to make some assumptions about parameters. Here, it is

required that none of the parameters I?, m, v, {) be zero. For
degraded situations (i.e., one of these parameters becomes zero),
discussion will be given elsewhere. Under this assumption, S,
=0 and S_=0 cannot simultaneously occur. First order derivatives
of functions f;(£) and f,(&) are plotted in Fig. 1. Different S, and
S_ scenarios are presented in Table 1.

Define c=-m1?, d=2mw), e=K-mQ> According to the
theory of algebraic equation, four roots of Eq. (23) are identical to
the roots of two quadratic equations

E+(2z-0)"P+2-[202z2-0)"1'd=0 (26)
E-(2z-0)"+z24[202z-0¢)"?T'd=0 (27)

Here z is a real toot of the following equation [7]
2(z2) =7° = cz* 2 — ez +cel2 —d*8 =0 (28)
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Fig. 1 First order derivatives of functions f;(£) and £,(¢)

Since Z(c/2)=—-d?/8<0 and Z(+%)— +%>0, it is clear that
there exists at least one real root satisfying z>c/2. Two ap-
proaches can be used to identify one real root of Eq. (28). Given
the existence of at least one root in (c/2, »), one approach relies
on numerical iteration using search method such as Newton’s al-
gorithm [26]. Another approach gives analytical representation of
the real root of Eq. (24) after carefully analyzing the distribution
of various parameter combinations. For the time being, it is as-
sume that z in Egs. (26) and (27) has been obtained as known
value. Define respectively determinants of Egs. (26) and (27)

Ay=—(2z+¢)+2d(2z - )™ (29)
Ay=—(2z+¢)-2dQ2z-¢)"? (30)

The four roots of Egs. (26) and (27) can thus be given by
&o=[-Q2z-0)"?=A*)2 (31)
&4=[2z-0)"* £ A2 (32)

Whether &, , and &; 4 are real or complex depends on the distri-
bution of parameters. Two real roots of &; ; and &; 4 are true zeros
for 7,(§)=0 in Eq. (22).

Table 1 Features of characteristic equation

Y Low Frequency, Low Speed
s I (8, >0and S_>0)
-~ \/ S, >0 results in Q2 < (K /702,
-5 8. >0 results in v <[4(K - mQ* /"]
£ Eq. (23) may have (i) two real negative
roots plus two complex roots, or (ii) one
duplicated real negative root plus two
complex roots, or (iif) four complex roots

Low Frequency, Critical Speed
{S,>0and S_=0)

S, >0 resultsin Q < (K /m)"2

S. =0 results in v =[4(K - 7Q?) /7 "
Eq. (23) has two real negative roots plus
two complex roots

Low Frequency, High Speed

(8, >0and §_<0)

S, >0 results in Q < (K /m)"?

S_ <0 results in v > [4K -mQ*)/m*]"
Eq. (23) may have (i) four real roots, or (if)
one duplicated real positive root plus two
real negative roots, or (jii) two negative
roots plus two complex roots

Critical Frequency (S, =0)

8, =0 results inQ2 = (K /m)'"?

Eq. (23) may have (i) four different real
roots (one negative, one zero, two positive,
or {ii) one duplicated real positive root, one
zero, plus one negative root, or (iii) two
real rot plus two complex roots

High Frequency (S, <0}

S, <0 results inQ > (K /#)""?

Eq. (23} has two real roots (one positive
and one negative) plus two complex roots
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Fig. 2 Three-dimensional dynamic frequency response function (left: r,=1X10"% m, v=30 m/s, Q=10 Hz; right:

ro=1m, v=30 m/s, Q=10 Hz)

In summary, five poles of the integral in Eq. (21) have been
identified. Similar to the derivation of Eq. (21), either numerical
methods or residue theorem can be applied to evaluate Eq. (21). In
the latter case, for y=0 the constructed closed contour is the
upper half ¢ plane. One needs to specify the branch where this
contour is located due to the nature of the denominator in Eq.
(21). The determination of critical speed and frequencies of the
moving load is based on the analysis of the denominator of an
expression for the plate response. Pesterev et al. [28,29] noted that
this could be misleading in some related problem, for instance,
moving loads on beams.

Define Galilean transform for a follow-up coordinate system
x'=(x",y') as x'=x—ur and y=y’. According to Eq. (21) further
define Wy(x)=H,(ry,v,Q)exp(iQ¢). Numerical computation has
been conducted in the follow-up coordinate system. For typical
cement concrete pavement structures [27], the parameters are P
=205.5482/m, K=229240.8/m* and m=0.371248 kg/(Nm®).
Frequency response function H/(ry,v,Q) is shown in Fig. 2 for

different load speeds, frequencies and distributions, in which the
unit for the dynamic displacement is meter.

6 Maximum Response, Static Solution, and Critical
Speed

It is of great interest for both theoretical study and engineering
practice to investigate the maximum response and where it occurs.

Clearly the origin of this follow-up coordinate system travels with
the moving load at the same speed. In order to reach the maxi-

Journal of Applied Mechanics

mum, the gradient of the real part of the nominator in Eq. (17),
ie., g(x',y")=Relexpli(&' +ny') [} =cos(&’ + 7y’) must become
zero. In other words

Vg'(x") = (aglox’,agldy") = (0,0) (33)

Note that Eq. (33) has to be satisfied with respect to ¢ and 7
simultaneously. By substituting g(x')=cos(&’+ny’) into Eq.
(33), it is found that the only nontrivial solution of these two
equations is x'=(x",y")=(0,0), resulting in the maximum dis-
placement response

sin &ry
Erom(Olm(9) + €]

The maximum occurs at the origin of the following-up coordinate
system, which indicates that the displacement beneath the center
of the moving line load always has the greatest magnitude and
travels at the same speed as does the moving load. Because Eq.
(33) is independent of the load distribution, the same conclusion
applied to the situation of a moving point load. The maximum
displacement response to a moving point harmonic load can be
obtained by taking limit to Eq. (34) as ry—0

W(x')=@8m)'iP Y,

Im( "7j)>0

dé¢ (34)

—

0

1
e OO + €]

Here lim sin éry/ érg=1 has been used.
ro—0
The correctness of dynamic displacement response Eq. (16) to a
moving load can also be verified by comparing the degraded situ-

Wp(x') = (Bm)iP >

Im(?yj)>0

d¢  (35)
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ation with static solution of the slab under a point load, which has
been well-known or years [23]. To do so, let load velocity and
frequency v=0, 0=0 in Eq. (16), leading to

W@)(%OWJ.[GWM&+WH&M
= (E+7P)*+K

Define coordinate transform x=r cos 6, y=rsin 6, £={ cos ¢, and
n={sin . Since sin 6 cos Y+cos O sin Y=sin(6+ ), applying
this relation and the Euler formula exp(is)=cos s+isins to Eq.
(36) gives

W,(x) = 2m) 2Pf f cos[r(sm(0+ l’b)]gd(dglf (37)

(36)

It is known that the Bessel function can be expressed as Jy(z)
=(27T)"f3” cos(z cos ¢)dep [25], in which Jy(-) is the zeroth order
of Bessel function of the first kind. Adopting this representation,
Eq. (37) can be rewritten as

A

W,(x) = (277)-'PLC DE+E (38)

dg

This is identical to the static solution given in Ref. [23].

In one-dimensional structures such as a beam, it has been ex-
perimentally observed and theoretically proved that there exists a
critical speed [16,30]. In two-dimensional structures such as a
plate, critical speed and critical frequency also exist, under which
resonance may occur. To analyze critical velocity and critical fre-
quency, the key lies in the characteristic Eq. (21), or more specifi-
cally in the second-order pole of the equation 7;(§)=0. Math-
ematically a duplicated root of characteristic Eq. (23) requires one
of the determinants of Eqgs. (26) and (27), namely, either A;=0 or
A,=0 must be zero. This leads to the following equation

(2z-¢)2z+¢)*-4d*=0 (39)

As stated earlier, z in Eq. (39) is a real root of Eq. (28) and thus a

function of K,7,v,Q). Equation (39) therefore gives the condition
of these parameters under which a second-order pole exists in the
integrand of Eq. (21). Resonance (infinite displacement) can be
observed if the combination of K,i,u,() satisfies Eq. (39).

The satisfaction of Eq. (39) gives precisely the condition under
which the so-called critical velocity and frequency can be deter-
mined. From Table 1, however, one can develop an approximate
relationship between the critical velocity and critical frequency.
As it can be seen from Table 1 that in the cases of low frequency
and low speed ( S, >0 and S_>0), low frequency and high speed
(S,>0 and S_<0) and critical frequency (S,=0), a duplicated
root can occur. This corresponds to a second-order pole in the
complex # plane. The value of function f;(£) with which function
f2(&) is tangent can be approximated by the minimum of f;(§).
According to Eq. (24), this minimum is min f;(&)=K—-m(Q?

1*/4), corresponding to &==+(m1?)/2. Because at this point
function f,(&) approximately has the same value, taking Eq. (25)
into account, we have [+(717)/2](-=2muQ) =~ K—m(Q*+
equivalently

/4) or

K- m(Q* +v'/4) + n*r’Q =~ 0 (40)
Equation (40) can be thought of as an approximate equation gov-
erning the relationship between critical velocity and critical fre-

quency. For instance, if load frequency is Q= (K/7)"2, according
to Eq. (40) the critical velocity becomes vieq = mQ = (1K) "2,
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7 Concluding Remarks

The displacement response of a thin plate resting on a Winkler
elastic foundation subject to a moving harmonic load with line
distribution is studied using integral transform method. The solu-
tion is constructed as a convolution of dynamic Green’s function
of the plate. It is shown that there exist critical velocity and criti-
cal frequency, which are governed by the characteristic equation
of the thin plate. An analytical approximate equation is developed
to describe the relationship between critical load velocity and
critical frequency. It is also found that the maximum displacement
response occurs at the center of the moving load and travels at the
same speed with the load.
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This work considers the effect of external forces during finite du-
ration collisions using an incremental model of impact. The de-
formation of the “rigid” body is modeled through an elastic ele-
ment and the time interval over which contact occurs is of finite
duration. Moreover, the work done by the external forces is non-
zero during the collision. This model allows for an equivalent
coefficient of restitution e to be identified. In the presence of a
constant external force the coefficient of restitution depends not
only on the system parameters, but the initial relative velocity at
the point of impact. For external forces which tend to bring the
colliding bodies together, the colliding bodies remain in contact
for sufficiently small impact velocities (e=0) while for larger in-
coming speeds, the coefficient of restitution is positive. This state
dependent restitution arises from the coupling of external forces to
the collision model, and is not seen in more familiar models of
impact. Finally, based on the results of the experimental system
and the incremental model, the standard algebraic model of res-
titution is modified to include these finite duration
effects. [DOIL: 10.1115/1.1875552]

1 Introduction

Impact describes the contact and interaction between two
masses whose dynamics, in some past time, were independent of
one another. These collisions typically involve impulsive forces
and moments which lead to deformation in the contacting masses.
However, rigid-body dynamics allows no such material deforma-
tion and therefore the details of the impactive event are replaced
by constitutive relations, or impact laws, which approximate the
mechanics of the collision process. Algebraic impact laws typi-
cally invoke a coefficient of restitution to describe the impactive
event [1-3]. However, the development and application of com-
mon algebraic descriptions of impact assume that during the col-
lision only the contact forces do work on the system. Uncon-
strained pairwise impacts, impacts with a rigid, immovable
surface, and collisions in the presence of kinematic constraints are
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three such examples.l During the collision interval, external, non-
impulsive forces are neglected and their contribution to the im-
pulse acting on either of the colliding bodies is not considered.
This assumption is often justified by noting that the time interval
across the collision is short, and in the limit of an instantaneous
collision the contribution to the impulse from external forces van-
ishes, provided the external forces are nonimpulsive.

1.1 Role of External Forces. This work focuses on collisions
in which the contribution to the total impulse from external forces
is nonzero. The resulting external impulses may significantly af-
fect the collision dynamics if they are of the same order of mag-
nitude as the collisional impulse. Tatara [4] experimentally
showed that both the measured coefficient of restitution and im-
pact duration depend on the magnitude of these external forces.

In such a situation, the impact can be modeled as a finite-time
collision. This work considers a simple incremental model which
allows for an analytic investigation of the resulting dynamics.
Similar incremental models have been widely used to investigate
collisions for which only the contact forces are considered, i.e.,
the total momentum is conserved [5-7]. To conclude, numerical
results are presented based on a nonlinear contact model proposed
by Hunt and Crossley [8] which qualitatively exhibits the same
phenomena as seen in the simpler model.

There exist several situations in which the external impulses
that act on the colliding bodies during the impact are non-
negligible. For example, in impacts between one or more bodies
with significant compliance, the impact duration can be of suffi-
cient duration to lead to non-negligible external impulses. Also, if
a pairwise collision is subject to external impulsive loads during
the impact interval the total momentum is not expected to be
conserved. Such a situation is related to simultaneous impacts
[9,10] when a body is subjected to impulsive loads induced by the
multiple single-point contacts and the momentum between any
pair of colliding bodies is not conserved. A third example occurs
as a mass comes to rest through a sequence of repeated impacts.
As the impact velocity approaches zero, the impulse from the
impact forces weakens. In this case although the impulse arising
from the external forces may remain small, it can be significant in
comparison to the collisional impulse. This final case is examined
to experimentally motivate the analytical model which follows.

This work invokes a one-dimensional incremental model of a
collisional event [9]. In contrast to studies that focus on the dy-
namics of repeated impacts [11,12], the current work concerns the
dynamic behavior across a single impact. The impact is character-
ized by a discontinuity in the resulting dynamical system, while
the loss of contact introduces a discontinuity in the second deriva-
tive of position, although the vector field at this point remains
once differentiable. From this system, a kinematic coefficient of
restitution is obtained that depends not only on the parameters of
the system, but on the state of the system at the impact, including
the initial impact velocity and the external force. This work seeks

'Each of these examples leads to an equivalent equation of motion for the contact
deformation during the collision.
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a. b.

Fig. 1 Experimental setup

to develop alternative algebraic laws applicable in the above-
mentioned situations from consideration of incremental models of
the collision.

2 Experimental Motivation

An experimental apparatus was constructed to illustrate colli-
sion dynamics for very low speed impacts, e.g., in the final colli-
sions of repeated impacts. The experimental system, sketched in
Fig. 1, consists of a pendulum (m=2 kg,/=25 cm) oriented so as
to contact a solid steel base in the horizontal position to allow for
one-dimensional impact. A hemispherical impact specimen (r
=2 cm) is attached to the steel block, roughly at the assembly’s
center of percussion (this location will vary slightly with the mass
of the specimen). Finally, the experimental apparatus can be in-
clined through an angle ¢ to vary the gravitational force in the
direction normal to the contact surface.

To develop an a posteriori estimation of the coefficient of res-
titution, the incoming and outgoing velocities of the specimen are
required, which can be estimated from the time interval between
contacts. For periods when the mass is in flight, the equation of
motion, assuming small displacements, reduces to X=—g cos ¢,
where x is the displacement of the impact specimen above the
impact surface and g cos ¢ is the gravitational acceleration normal
to the collision plane. Thus, if the velocity of impact specimen at

the k-th liftoff is v, the duration of the k-th period of flight,
denoted by Az, is simply

2
Uk
gcos ¢ k

From this, an experimental coefficient of restitution for the k-th
impact can be determined from the duration intervals as

Alk""

Ukl Aty
Uy Alk

e = (1)

Therefore, the transition points of the process must be deter-
mined, that is, the times at which collisions initiate and terminate,
without regard for the contact forces that occur during the colli-
sion. The time intervals are obtained by applying a positive volt-
age to the apparatus with a specimen electrically isolated from the
base. A metallic foil is bonded to the specimen and the system is
connected to the data acquisition system as represented in Fig.
1(a). During each individual collision, when the specimen is in
contact with the base, the electrical circuit is closed and a positive
voltage is measured. In contrast, during the noncontact intervals,
the circuit is open and zero voltage is recorded. Impact data was
sampled at a rate of 2 kHz, with the data acquisition performed by
LABVIEW. Finally, the specimens were released from a height of
approximately 25 mm. Sample voltage measurements are shown
in Fig. 2 for two different inclinations of the contact plane.

Finally, these identified time intervals are used to determine the
experimentally measured coefficient of restitution as shown in
Fig. 3, versus impact velocity (e, versus vy) according to Eq. (1).
These experimental tests clearly show that, for very low velocity
impacts, the measured coefficient of restitution depends on both
the impact velocity and the orientation of the contact plane with
respect to gravity. Motivated by these observations, a model for
such impacts is formulated below.

3 Incremental Model

Consider a body impacting a rigid surface. It is assumed that
the deformation due to the collision is localized in a small region,
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Fig. 4

Incremental model

while the remainder of the body undergoes rigid-body motion.
Therefore the body is decomposed into a rigid body of mass m
and a massless base, with the contact stiffness and dissipation
represented by elastic and damping elements. Moreover, m is sub-
ject to an applied force W(7) (see Fig. 4).

As shown in Fig. 4, x(7) measures the position of the massless
contact point, while z(7) represents the deformation across the
contact zone. Note that if x(7)=0, the mass is in contact with the
surface. The resulting model is governed by the following system
of equations:

m(Z"+x")==bz —kz—W(7),

0=bz' +kz+N,

where d/dr=()" and N represents the contact force.
In the Appendix, Sec. I, these equations are nondimensionalized
to yield
(Z+%) +2L+z=—-F(1),
(2
0=2Z+z+N,
with d/dr= (). Finally, the contact force N(t) obeys the inequality

constraint N=0. When the body is not in contact with the surface,
N(1)=0 and the equations governing free motion become

Z+¥=-F(1),

0=20+12.

Contact initiates when, during a period of free motion, x(¢)=0.

During contact, the kinematic constraint implies that x(¢) =0,
so that the equation governing the dynamical behavior of the rigid
body is described by a single-degree-of-freedom oscillator

I+20+z=—F(1),
and the contact force becomes
N@)=- (2% +72).

N(z) is required to be non-negative, so the termination condition
for the collision can be expressed as N(z¢)=0, or

0=(29z(t,) + z(ty),

where =1, is the time at which separation occurs and the collision
terminates [6]. With this description, the relative displacement at
termination z(z) is not necessarily zero.

While a closed-form solution for z(7) exists while the mass is in
contact with the surface, the time at which the collision terminates
is determined by a transcendental equation. To determine the dy-
namical behavior these closed form solutions are used, while nu-
merically solving the transitional conditions which determine the

780 / Vol. 72, SEPTEMBER 2005

transition between these free and constrained motion using a
Newton-Raphson algorithm. This procedure is analogous to that
used in Shaw and Shaw [13].

4 Coefficient of Restitution

A coefficient of restitution can be identified when F(¢)=F,
=constant, that is, the external term is constant during the dura-
tion of the collision. Recall that from the Appendix, the time scale
of the nondimensional equations is consistent with the impact du-
ration. Thus, provided that the external force does not vary on this
time scale, considering F(#) to be constant during the collision is
consistent.

Therefore, analogous to Newton’s coefficient of restitution

e=— m. (3)
(1)
However, the impact occurs over a finite time interval Ar=t,—1;
which must be determined from the model.
To calculate e, the equations of motion governing contact

i+Q2Di+z=-F,,
are solved subject to the initial conditions
2(1;) =0,

Without loss of generality #;=0 can be assumed. During contact,
these equations can be solved in closed-form as

Zt(t,‘) == Z()

2o —e\ -1 21
z(t)=—F0—T[e( ENE-DE_ p(=NE-Dr
2V -1
Fo e Ve O S

WE-1[(-{+N2-1D) (L= -1)
These equations can then be used to determine the duration of the
impact 7,. This time can be used to determine the velocity at liftoff
and hence the equivalent coefficient of restitution obtained from
this incremental model. However, 7, is determined from a tran-
scendental equation.

Zero External Force. When the applied load F, vanishes, the
coefficient of restitution depends only on the damping ratio {, and
can be solved in closed form to yield

b= ([P = 1)0NED, @
while the duration of impact reduces to
fe = I[(§ 42 = YD), (5)
For £ €[0,1), 7y and e, reduce to
2 20 e
N
trow= "=, eOO:exp(— —), tan p=——,
¢, \“’1 _ {2 \"] _ é«Z g‘

As seen in Fig. 5, the value of e,, decreases monotonically as
the damping ratio, increases. Thus in this limit e.. can be identified
with an equivalent damping ratio. For example, with {=0.10, e,
=0.744. Moreover, in the absence of external influences, the
equivalent coefficient of restitution is independent of the impact
velocity for this model.

Nonzero External Force. Unlike the unforced response, for
Fy#0, the coefficient of restitution depends not only on the
damping ratio ¢, but on the quantity », the ratio of the nondimen-
sional impact velocity to the nondimensional applied load directed
normal to the contact surface, that is

_ %

Fy
Unfortunately, the final collision velocity, and therefore the a pos-
teriori coefficient of restitution e, can no longer be determined in
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1.0

Fig. 5 Equivalent Newtonian restitution (Fy=0)

closed form. Rather, this quantity is evaluated numerically. In Fig.
6, e is calculated for three different values of { as v is varied. In
each figure for sufficiently small impact velocities the mass does
not leave the surface—the equivalent coefficient of restitution is
zero. For a fixed F, as the impact velocity increases, there exists
a point for which the mass leaves the surface following the colli-
sion, and the coefficient of restitution becomes nonzero. As the
impact velocity is further increased, or equivalently the applied
load is decreased, the coefficient of restitution approaches the lim-
iting value e,, as described above (the dashed line in each panel).
When the external force vanishes, the coefficient of restitution
remains constant as z, varies, at a value e., as defined in Eq. (4)

(see Fig. 5). Only in this case can the coefficient of restitution be
considered as a “material parameter,” a quantity independent of
the initial impact velocity Z.

Thus with the introduction of external forces into the incremen-
tal model and nonzero energy dissipation ({>0), the equivalent
coefficient of restitution vanishes for sufficiently small values of
v. The critical point at which the equivalent restitution vanishes is
defined by the conditions

N(Ze,cr) =0a N(tf,cr) =O’

which, taken together, imply the nonzero conditions for the posi-
tion and velocity

Z(t(,,cr) = (_ 4§Z)F0a Z(tf,cr) = (20170

These conditions lead to an implicitly defined relationship be-
tween ¢, the nondimensional damping ratio, and v, the critical
ratio between the impact velocity and the external load of the
form

2\52 1= {(g_ \§2 _ 1)33(0’\;‘@)[‘,61‘— (£+ \42 _ 1)36(4’—\38_1)[5‘0,}’

/ [ 1 2
2 NP = 1={({- NP - 1)28(§+\§ Diger (&
+ \§2 - 1)26@_\;%)’0&'@7

where #; ., is the unknown time interval of the impact as the
equivalent restitution vanishes. The resulting relationship between
{ and v, obtained by numerically evaluating these conditions, is
shown in Fig. 7. For small ¢, v, is numerically observed to scale

1.0 1.0
08 r
06
e F e
04 F
+
02
0.0 Il 1 1 ] 1 1 1 L i
4] 2 4 6 8 10
v
a. ¢ =0.025
10
08 -
0.6 [

c. (=025

Journal of Applied Mechanics

Fig. 6 Equivalent coefficient of
restitution. The value of e, is
shown by the dashed line.
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For a specified value of ¢, the corresponding value of v, char-
acterizes the point at which the external force plays a significant
role in the relative velocity after the collision. Because ¢ and e,
are one-to-one (see Fig. 5), v, can be identified with e, the
coefficient of restitution in the absence of external forces, as
shown in Fig. 8. The value of v, increases as e.. decreases.

As v— v, although the equivalent coefficient of restitution
vanishes, the nondimensional duration of the impact remains fi-
nite. In Fig. 9, t, is shown as { varies. The solid curve represents
t¢ or» the collision duration for v=wv,. For comparison the dashed
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Fig. 8 Critical v versus e,

Fig. 9 Duration of the collision t,
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line shows the value of 7y, the collision duration in the absence
of external forces (Fp=0). For (=0, t; =2 and t; =7 As {
increases, t¢ ., and ¢ .. can be approximated as

t{’,cr -~ ln((2§)3/§) 5
te. ~ In((20)9),

As { increases the ratio of these two times rapidly converges to
3/2 and both impact times approach zero.

This incremental model contains two nondimensional param-
eters which describe the post-collisional behavior—the damping
ratio ¢ and the quantity v=z/F. In terms of dimensional quanti-
ties these can be expressed as

as { — oo,

’

=\km—, 6
V\mW ()

" 2Vkm'

where k represents a “contact stiffness,” and b describes the “con-
tact damping.” From the latter of these relations, the value of z_,,
the dimensional impact velocity at which the external force be-
comes significant may be determined to be

, w

24 = TV

Ccr \‘km cr
Typically this implies that the external forces cannot be neglected
when the impact velocity is small, as occurs when a body comes
to rest in a series of repeated impacts. Alternatively, as described
in the Introduction, the value of z,, increases with increasing W or
decreasing k (equivalently increasing compliance). Finally, as
seen in Fig. 8, for bodies with low values of e.., the value of v,
increases so that z/, increases as well.

5 Nonlinear Contact Model

The above ideas can be extended to other contact models. Hunt
and Crossley [8] develop a nonlinear incremental contact law
based on Hertzian contact and experimentally observed scalings.
This model can be nondimensionalized and placed in the form
(see the Appendix, Sec. II)

Irnere 3
I+ \f|z|<5511|zi+z)=—Fo, (7
subject to the initial conditions

Z(t,‘) =0,

The quantity F has been added to represent an external force
applied to the body. For this nonlinear contact model, an a poste-
riori kinematic coefficient of restitution can be defined as in Eq.
(3). However, unlike the previous analysis for the viscoelastic
contact law, closed form solutions to Eq. (7) do not exist in terms
of elementary functions. This equation must be instead solved
numerically to determine the post-collisional velocity and the time
duration of the impact.

For this nonlinear contact model, the collision terminates when
the contact force vanishes and the resulting identified coefficient
of restitution is shown in Fig. 10 as the initial impact velocity is
varied. In the absence of an external load (F=0), the coefficient
of restitution decreases with increasing impact velocity (shown as
the dashed line in each panel). However, for F(,>0, there exists an
interval of sufficiently small impact velocities for which the re-
sulting kinematic coefficient of restitution is identically zero. For
small impact velocities e vanishes, and then rises quickly beyond
some critical velocity. As the impact velocity increases further, the
equivalent coefficient of restitution decreases, mimicking the re-
sults for F3=0. The behavior of the collision subject to this non-
linear contact law is qualitatively similar to the behavior predicted
with the linear viscoelastic contact law.

(1) == Zy.
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Fig. 10 Equivalent Newtonian
restitution for the nonlinear con-
tact model of Hunt and Crossley
(6=0.10). The measured coeffi-
cient for Fy=0 is shown for refer-
ence as the dashed line.
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6 Modified Algebraic Model

The dynamics associated with repeated impacts has been shown
to lead to “chatter” and is difficult to numerically simulate be-
cause the time duration between impacts becomes vanishingly
small as a specimen comes to rest. From the model considered
within this work, if the quantity 7/F is large, the coefficient of
restitution identified by the above model is well approximated by
Newtonian restitution. However, based on the motivating experi-
ment (see Fig. 3) as well as the analytical results illustrated in
Figs. 6 and 10, the present study implies that for low impact
velocities, one may introduce an appropriately chosen cutoff in
the impact velocity, below which the coefficient of restitution van-
ishes.

Based on the linear viscoelastic model, given the coefficient of
restitution one can estimate the equivalent linear damping coeffi-
cient ¢ (see Fig. 5). From the results in Fig. 7, one can then
calculate the value of v at which the restitution vanishes. There-
fore, the dimensional cut-off velocity corresponding to nonzero
restitution scales as

| ~

4 —_—
Ler =

W v <V_V) Ver

ym \

= —
1

This critical velocity can be used identify a second parameter o,
related to a characteristic time scale of the collision as

More generally, one can define the dimensional quantity o as a
second material parameter independent of any specific contact law
(analogous to the identification of the coefficient of restitution as a
material parameter). Thus a suitable algebraic collision model
may take the form

(®)

e=

w
0, O$z'<(—)0',
m

where e” is the coefficient of restitution which would exist in the
absence of external impulses. Such a model introduces a cut-off
velocity which depends on the colliding bodies (through the quan-
tity o) as well as the external forces W.

Journal of Applied Mechanics

7 Discussion and Conclusions

The modified algebraic law can be evaluated against the experi-
mental data described in Sec. 2. The varying inclination of the
contact plane implies that the external force is W=mg cos ¢, so
that the dimensional cut-off velocity from Eq. (8) becomes

7' =(go)cos ¢. 9)

In Fig. 11 the experimentally measured cut-off velocity is shown
versus ¢. Superimposed upon the data is the predicted velocity
with 0=7.83 X 1073 s, as determined by a least-squares fit to the
data. The agreement between the experimental data and the pre-
dicted dependence on ¢ is excellent.

A simple one-and-a-half degrees-of-freedom system has been
considered that serves as an incremental model of collisions, sub-
ject to appropriate constitutive assumptions for the contact force.
For a viscoelastic contact model, the contact dynamics can be
solved in closed form to relate the state of the dynamical system
before and after the collision. Further, an equivalent algebraic col-
lision law is developed from this model. This reduction removes
the finite-time aspects of the collision process from the model at
the cost of an additional parameter that accounts for the effect of
external forces. These effects are important when the impulse aris-
ing from external forces is non-negligible when compared to that
of the impulse arising from the contact force. In addition, a non-
linear contact model due to Hunt and Crossley, based on Hertzian
contact, was also used and showed qualitatively similar behavior
for sufficiently low impact velocities.

The model due to Hunt and Crossley is in part based on work
by Goldsmith [14], who studied the effect of impact velocities on

008 |-

006 -

004 P~

002 p~

0.00 1 1 1 1 1
0° 15°  30° 45° 60° 75° 90°

4

Fig. 11 Experimental critical cutoff velocity. The solid curve is
Eq. (9) with 0=7.83X10"% s.
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the coefficient of restitution. He found that experimentally the
coefficient of restitution increases as the contact velocity ap-
proaches zero, possibly due to decreasing plastic deformation in
the contact zone. These results stand in apparent contrast to this
work. However, the experimental configuration described by
Goldsmith eliminates the external compressive force, which is
necessary for the behavior described in the current work.

This work illustrates the dynamics of collisions which include
the role of non-negligible impulses arising from external forces. In
particular, as the impact velocity between colliding bodies de-
creases, the external impulses give rise to a cut-off velocity below
which the equivalent coefficient of restitution vanishes. Above the
critical velocity, the equivalent coefficient of restitution rises rap-
idly to the value in the absence of external forces. This qualitative
behavior was exhibited in a motivating experimental study and
then shown to exist to two analytical systems, one based on a
linear viscoelastic contact model and the second based on a non-
linear contact model develop by Hunt and Crossley. Finally based
on the analytical results, these finite-duration effects can be incor-
porated into existing algebraic models of restitution through the
introduction of a cut-off velocity which scales with the external
forces and also depends on a material parameter related to the
contact stiffness.
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Appendix: Nondimensionalization

Viscoelastic Contact Model. The equations of motion are non-
dimensionalized through the following transformation to time

k
r=1/—T,
m

while the applied load and contact force are scaled as

@ =F(1), %] =N.
Finally, defining the nondimensional damping ratio
20= L—
Vkm

yields Egs. (2). The nondimensional time scale is associated with
the relative motion across the compliance. With this scaling, the
nondimensional natural frequency for the mass is unity when in
contact with the surface. In the absence of external forces, this
model, in similar forms, has been considered previously [6,15,16].

Nonlinear Contact Model. The incremental model proposed
by Hunt and Crossley [8] can be written as

" 3 ' -
mz" +k\z] 2a|z\z +z|=-W(7),
where W, has been added to represent a constant external force

applied to the body. The stiffness k arises from a Hertzian contact
assumption, while the nonlinear damping, proportional to « is
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chosen to reflect the experimentally observed linear decrease in
coefficient of restitution with increasing impact velocity. Note that
k has units of force/length®? while « has units of velocity™!.

To nondimensionalize, scale time by w and the displacement by
a characteristic length &, to yield

Iy 3
i+ \*“|Z|(56Tz|z'+z) =-F,,

where w?=m/(k \“E) , and

k Wo
o= a\/;f"‘, Fy= @

Finally, the velocity scales as

oo (o).
w m

The characteristic length ¢ is choosen to be the maximum com-
pression during a collision which arises in the system with zero
damping (@=0) and impact velocity z'(0)=z, found to be

Since a has units of velocity™!, z{ is choosen to have magnitude
2/45, with the same units as o', Therefore the nondimensional
values of & and the velocity have the same magnitude as their
dimensional counterparts, while the external forcing can be writ-
ten as

Foo o
0 3B
References
[1] Brach, R. M., 1989, “Rigid Body Collisions,” ASME J. Appl. Mech., 56, pp.
133-138.

[2] Wang, Y., and Mason, M. T., 1992, “Two-dimensional Rigid-Body Collisions
with Friction,” ASME J. Appl. Mech., 59, pp. 635-642.

[3] Stronge, W. J., 1990, “Rigid Body Collisions With Friction,” Proc. R. Soc.
London, Ser. A, A431, pp. 169-181.

[4] Tatara, Y., 1977, “Effects of External Force on Contacting Times and Coeffi-
cient of Restitution in a Periodic Collision,” ASME J. Appl. Mech., 44(4), pp.
773-774.

[5] Stronge, W. J., 2000, Impact Mechanics, Cambridge University Press, Cam-
bridge, UK.

[6] Butcher, E. A., and Segalman, D. J., 1999, “Characterizing Damping and
Restitution in Compliant Impacts via Linear Viscoelastic Models,” 1999
ASME Design Engineering Technical Conferences, Las Vegas, Nevada, Sep-
tember 12—15, DETC99/VIB-8335, ASME, New York.

[7] Fandrich, M., 1998, “Modelling Nondestructive Impacts Macroscopically,”
Math. Comput. Modell., 28(4-8), pp. 205-224.

[8] Hunt, K. H., and Crossley, F. R. E., 1975, “Coefficient of Restitution Interpre-
tated as Damping in Vibroimpact,” ASME J. Appl. Mech. , pp. 440-445.

[9] Brogliato, B., 1999, Nonsmooth Mechanics: Models, Dynamics and Control,
2nd ed., Springer-Verlag, London.

[10] Hurmuzlu, Y., and Ceanga, V., 2000, “Impulse Correlation Ratio in Solving
Multiple Impact Problems,” Impacts in Mechanical Systems, B. Brogliato, ed.,
(Vol. 551 of Lecture Notes in Physics), Springer-Verlag, Berlin, pp. 235-273.

[11] Holmes, P. J., and Marsden, J., 1982, “Melnikov’s Method and Arnold Diffu-
sion for Perturbations of Integrable Hamiltonian Systems,” J. Math. Phys., 23,
pp. 669-675.

[12] Koditschek, D. E., and Biihler, M., 1991, “Analysis of a Simplified Hopping
Robot,” Int. J. Robot. Res., 10(6), pp. 587-605.

[13] Shaw, J., and Shaw, S. W., 1989, “The Onset of Chaos in a Two-degree-of-
freedom Impacting System,” ASME J. Appl. Mech., 56, pp. 168-174.

[14] Goldsmith, W., 1960, Impact: The Theory and Physical Behaviour of Colliding
Solids, Edward Arnold Ltd., London.

[15] Brach, R. M., 1991, Mechanical Impact Dynamics: Rigid Body Collisions,
Wiley, New York.

[16] Chatterjee, A., 1997, “Rigid Body Collisions: Some General Considerations,
New Collisison Laws, and Some Experimental Data,” Ph.D. thesis, Cornell
University, Ithaca, New York.

Transactions of the ASME



Which Formulation Allows Using a
Constant Shear Modulus for
Small-Strain Buckling of Soft-Core
Sandwich Structures?

Zden¢k P. Bazant

McCormick School Professor and W. P. Murphy Professor
of Civil Engineering and Materials Science

Fellow ASME

Northwestern University, 2145 Sheridan Road, CEE,
Evanston, IL 60208

e-mail: z-bazant@northwestern.edu

Alessandro Beghini

Graduate Research Assistant

Northwestern University, Evanston, IL 60208
e-mail: a-beghini @northwestern.edu

Although the stability theories energetically associated with dif-
ferent finite strain measures are mutually equivalent if the tangen-
tial moduli are properly transformed as a function of stress, only
one theory can allow the use of a constant shear modulus G if the
strains are small and the material deforms in the linear elastic
range. Recently it was shown that, in the case of heterogeneous
orthotropic structures very soft in shear, the choice of theory to
use is related to the problem of proper homogenization and de-
pends on the type of structure. An example is the difference be-
tween Engesser’s and Haringx’s formulas for critical load of col-
umns with shear, which were shown to be energetically associated
with Green’s and Almansi’s Lagrangian finite strain tensors. In a
previous brief paper of the authors in a conference special issue,
it was concluded on the basis of energy arguments that, for con-
stant G, Engesser’s formula is correct for sandwich columns and
Haringx’s formula for elastomeric bearings, but no supporting
experimental results were presented. To present them, is the main
purpose of this technical brief. [DOI: 10.1115/1.1979516]

Introduction

The question of a correct formula for critical load, P, of elas-
tic structures such as sandwich columns, composite columns, lat-
tice columns, helical springs, and elastomeric bearings, in which
shear deformations dominate, has been subject of polemics for
decades; see [[1], and references therein]. The best known ex-
amples are the formulas of Engesser and Haringx. The polemics
were settled in 1971 [2] by the demonstration that these two for-
mulas are equivalent if the shear modulus G is properly trans-
formed as a function of the axial stress; see also [3]. This showed
that, if the material behavior is nonlinear and the stress-strain
curve is defined in terms of the finite strain tensor as that used to
interpret test results, it does not matter which formula is chosen
because the difference is only in the form of stress dependence of
tangent shear modulus G. This conclusion, however, leads to ap-
parently paradoxical properties when the strains are so small that
the material is in the linear range of response.
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In [3], it was shown that such a situation may arise for built-up
(lattice) columns with very weak shear bracing, and that only the
Engesser formula is correct for such columns. In [1], it was shown
that such a situation also arises for sandwich columns very soft in
shear.

For such columns, the equivalence of Engesser’s and Haringx’s
formulas requires that the tangent shear modulus G cannot be
constant in both of these two formulas even if the strains are so
small that the core is in the linear range of response.

Because all of the axial load in a sandwich is carried by the
skins and all of the shear force is resisted by the core, the stress
dependence of G of the core means that the properties of the core
depend on the axial normal stress in the skins (or facings). This
may seem to be paradoxical. But the variational energy analysis in
[1] showed that this is simply a consequence of the fact that the
cross sections of the core may be assumed to remain plane.

In [4], variational energy analysis of the same kind as in [1] was
used to prove that, if all the strains at critical load, P, are small,
and if a constant G (as measured in small-strain torsion) is to be
used, then, for sandwich beams, only Engesser’s formula is cor-
rect, and, for elastomeric bearings, only Haringx’s formula is cor-
rect. However, experimental results supporting this conclusion
have not been presented. To present them is the main objective of
this Technical Note. A secondary objective is to briefly outline an
extension of this analysis to arbitrary soft-in-shear structures un-
der multiaxial stress, such as layered or highly orthotropic bodies.
In full detail, this extension is found in [5].

Background on Variational Analysis of Homogeneous
Orthotropic Columns With Shear

The variational energy analysis presented in [2] showed that the
differences between various stability theories for buckling with
shear arise from different choices of the finite strain measure. All
the finite strain tensors used in stability theories so far belong to
the class of Doyle-Ericksen finite strain tensors eM=U"-1)/m
where m=real parameter, I =unit tensor, and U=right-stretch ten-
sor. In particular, m=2 gives Green’s Lagrangian strain tensor, and
m=-2 Almansi’s Lagrangian strain tensor. For calculating the
critical load, only the second-order approximation of these tensors
matters; it reads [2]:

(m) _ 1 _1 1.1
= e+ Jy g j— aegey, ey =50+ ug), a=1-3m

| (1)

where e;;=small-strain tensor (linearized), u;=displacement com-
ponents, and the subscripts refer to Cartesian coordinates x; (i
=1,2,3). The finite strain tensors €”=(U"—U")/2n proposed in
[6] do not fit the class of Doyle-Ericksen tensors but the second-
order approximation of €™ for any n coincides with (1) for m
—0 (Hencky strain tensor). The stability criteria obtained from
any of these strain measures have been shown in [2] to be mutu-
ally equivalent if the tangential moduli ij",g associated with dif-
ferent m-values satisfy the relation:

€}

2-m
2
fjnlgz f‘_,'k)/+ 4

(Si 8+ S ;1.8 + Sy Oy + S y) (2)

(see also [3]) where nglzcomponents of tangential moduli tensor
C™ associated with Green’s Lagrangian strain (m=2) and S, 7
=components of current stress tensor S (Cauchy stress).

According to the standard simplifying hypothesis that the cross
sections of the core remain plane, which makes the problem one-
dimensional, the second-order accurate expression for the incre-
mental potential energy of a column that is initially in equilibrium
in an undeflected position is

SEPTEMBER 2005, Vol. 72 / 785



Fig. 1 Column in (a) initial state, (b) deflected state; contribu-
tion to the shear deformation of a sandwich beam element: (c¢)
bending, and (d) shear

L
52W:J f [So(y’z)(e(l’?)_ell)"'%E(m)(y’z)e%l
0 JA

+1G"(y,2) 7 ]dAdx 3)

where A =cross-section area; So(y,z)=—P/A=initial axial normal
stress; P=axial compressive load; E(m), G(”‘)ztangent elastic
moduli in the axial direction and shear, associated with finite
strain tensor €); y=u, 3+us =shear angle; y(x)=rotation angle
of cross section; x; =x=axial coordinate, x3=z=transverse coordi-
nate in the plane of buckling, u;=u(x)=axial displacement (in
x-direction), and u3=w(x)=transverse deflection (see Figs. 1(a)
and 1(b)). Applying the Trefftz condition of critical state to Eq.
(3), one can derive the critical load formulas associated with finite
strain tensor of any parameter m [1]. In particular for m=2 and
m=-2, one obtains the well-known formulas:

form=2: P, (Engesser) (4)

_ E
T 1+ (P/GPA)

GYA 4P )
form=-2: P, = 5 1+ =y 1| (Haringx)

&)

where Pp=mEI/’=Euler’s critical load of the column. It can be
checked that (5) is obtained from (4) if the following substitution
(a special case of (2) [2,3]) is made:

G?P=G"?+P/A (6)

Correct Critical Load Formula for Sandwich Columns
and Experimental Evidence

If the tangent modulus G in the presence of normal stress hap-
pens to be constant with respect to Green’s Lagrangian strain mea-
sure (corresponding to Engesser’s theory, m=2), it cannot be con-
stant with respect to the Almansi’s Lagrangian strain measure
(corresponding to Haringx’s theory, m=-2), and vice versa. Thus
the main question is how to use the constant shear modulus G that
is measured by small-strain shear tests, for example by torsion of
a hollow circular tube. Should this constant modulus be used in
Engesser’s formula, or in Haringx’s formula, or in a formula for
some other m-value? The correct answer for a sandwich is En-
gesser’s formula. This answer was not reached in [1] because the
physical interpretation of the variational analysis for a sandwich
was incomplete. The correct interpretation, leading to the correct
conclusion, was presented in [4] (and is also reviewed in [5]). It
may be summarized as follows.

We consider a sandwich beam element to undergo a rigid-body
rotation through a small angle w’ followed by homogeneous pure
shear deformation 7y, as shown in Figs. 1(c) and 1(d). Using the
notation shown in Figs. 1(a) and 1(b), we can describe the dis-
placement and deformation fields as follows:

786 / Vol. 72, SEPTEMBER 2005

up=up=ujz=e =0, uz;=7v ez=e3=7y2 (7

According to the assumption of negligible skin thickness, the
shear deformation within each skin vanishes (as shown in the
zoomed region in Fig. 1(d)), although the skins as a pair, of
course, do exhibit shear deformation (Fig. 1(d)). First we calculate
the work as a special case of Eq. (3) for a sandwich column. After
substitution of the homogeneous strain field (7) into (3), the flex-
ural terms vanish and one obtains (for a cross section of width b in
the y direction):

72— P 12
mp)ﬁ_L
2 2

Superscript m is here omitted because the core is in small strain,
in which case the shear modulus G is independent of the specific
choice of strain measure.

Second, we figure out the work on the sandwich beam element
by a direct elementary reasoning. During the rotation of the beam
element (Fig. 1(c)), the second-order approximation to the vertical
shortening is w’2/2, and the work of the axial force due to this
shortening is —Pw’2/2 (note that the work of loads must be taken
as negative because the potential energy of internal stresses is
taken as positive). During the subsequent shear deformation of the
core (Fig. 1(d)), the work of shear stresses obviously is bhGy?/2.
So the total work is

FW= (th + (8)

Y Pw'? ©)
2 2

Expressions (8) and (9) must coincide. Their comparison imme-
diately reveals that this happens if and only if m=2. So, this is the
value of m that allows the use of a constant shear modulus in the
small-strain analysis of a sandwich. For this, and only this, value
of m, the variational result in (8) coincides with the second-order
work obtained by the elementary reasoning based on (9). There-
fore, it must be concluded that whenever the strains are small and
the shear modulus is assumed to be constant, sandwich structures
must be analyzed on the basis of Engesser-type theory.

This result does not come as a surprise. Already in 1966, Plant-
ema [7] justified Engesser’s theory on the basis of several experi-
mental data. The Engesser-type theory has also been adopted by
Zenkert [8].

The most extensive support for Engesser’s theory is provided
by the recent tests of Fleck and Sridhar [9] shown in Figs.
2(a)-2(c). These tests also validate the correctness of the energetic
argument in [5] summarized here. In these tests, the sandwich
columns were fixed at both ends. The skins were made of the
same material and had the same width. The cores had the same
in-plane thickness and were made of Divinycell PVC foam. Three
different densities of the foam, with designations H30, H100, and
H200, and several column lengths L, giving different slenderness
1/(h+2t), were used. The diagrams in Fig. 2 are plotted in loga-
rithmic scales and dimensionless coordinates, as P../Pg versus
1/ (h+2t). The agreement with Engesser’s formula is good (except
for one anomalous point), while the formula of Haringx is seen to
deviate significantly from the test results if a constant G is used.

SW=bhG

Correct Critical Load Formula for Homogenized Elas-
tomeric Bearings and General Layered or Orthotropic
Structures

For elastomeric bearings and helical springs, discussed in detail
in [5], a large number of studies and all experiments clearly favor
Haringx-type theory. The mathematical argument is analogous to
that pursued for sandwich columns. If one calculates the work as
a special case of Eq. (3) for a pure shear deformation and com-
pares it to the expression obtained by direct elementary reasoning
(based on the sketch in Fig. 3), one concludes that the only m
value for which the two expressions are the same is m=-2, which
corresponds to Haringx’s formula [5].
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Fig. 2 Comparison of buckling formulas and experimental re-
sults for various density of Divinycell foam

The same type of argument may be applied to general homog-
enized soft-in-shear structures, e.g., layered bodies and unidirec-
tional fiber reinforced composites. The Engesser-type or Haringx-
type theory is found to apply if the compressive force is applied in
the direction parallel or normal to the layers or fibers, respectively.

For the general case of a soft-in-shear orthotropic structure un-
der biaxial stress, it is found [5] that a theory corresponding to a
general m-value must be used. It has been shown [5] that m is
given by the following equation:

e 2(SY8)) -2
(SYsh +1

where S(l) and S(3) are the initial normal stresses in the directions of
orthotropy.

(10)

Journal of Applied Mechanics

Fig. 3 Contribution to the shear deformation of an elastomeric
bearing element: (a) initial state, (b) bending, and (c) shear

To permit applying finite element discretization to homogenized
soft-in-shear structures of this kind, it would be useful to gener-
alize the current commercial finite element programs for an arbi-
trary value of m# 2 [4,5]. At present, all of them use an updated
Lagrangian algorithm energetically associated with Green’s
Lagragian finite strain tensor, i.e., with m=2, and thus, in general,
cannot give correct results for homogenized soft-in-shear struc-
tures [5].

Conclusion

The recent conclusion that for soft-in-shear sandwich columns
in small-strain and in the linear elastic range the critical load is
predicted correctly by Engesser’s (but not Haringx’s) formula
with a constant shear modulus of core is shown to be in good
agreement with recent extensive test results.
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A three-dimensional solution for the problem of transversely
loaded, all-round clamped rectangular plates of arbitrary thick-
ness is presented within the linear, small deformation theory of
elasticity. The Ritz minimum energy principle is employed to de-
rive the governing equation of the plate made of functionally
graded materials. In theory, if we employ an infinite number of
terms in the displacement series, the exact solution can be deter-
mined. However, a practical limit always exists due to numerical
implementation. The solution has a validity comparable to some
higher order theories. A power-law distribution for the mechani-
cal characteristics is adopted to model the continuous variation of
properties from those of one component to those of the other. The
displacements and stresses of the plate for different values of the
power-law exponent are investigated. [DOI: 10.1115/1.1985429]

1 Introduction

The concept of functionally graded materials (FGMs) has been
proposed in the beginning of the 90’s by Japanese researchers
[1,2]. The idea came from the awareness that the abrupt transition
in material composition and properties may result in sharp local
concentrations of stress. In FGMs, the microstructure changes
continuously, so that material properties in the thickness direction
vary from, say, E., to the value E,,, where E. and E,, are the
moduli of elasticity of two different materials. In the last five
years researchers have shown a huge interest in the statics, dy-
namics, and stability of structures made of FGMs (see, for ex-
ample, Suresh and Mortensen [3] and Reddy [4]). Several inves-
tigators devoted themselves to the study of simply supported FG
plates by means of different theories. Della Croce and Venini [5]
developed a hierarchic family of finite elements according to the
Reissner-Mindlin theory, while Reddy [6] and Yang and Shen [7]
dealt with higher-order shear deformation theories. Three-
dimensional analyses were carried out, among the others, by
Reddy and Cheng [8] and Vel and Batra [9]. Studies about
clamped FG plates have been proposed by Cheng and Batra [10]
for thermoelastic elliptic plates and by Qian and Batra [11] for
rectangular plates using a higher order shear and normal deform-
able plate theory together with a meshless local Petrov-Galerkin
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method. Since FG plates may have substantial thickness, previous
studies [5-11] based upon higher order theories are extremely
useful in providing realistic results.

Herein we employ the Ritz method for the three-dimensional
static analysis of all-round clamped FG plates subjected to a uni-
formly distributed normal load on the top surface. In this study an
aluminum/silicon carbide graded plate with a power-law variation
of the volume fraction of the constituents is considered. Both
Young’s modulus and Poisson’s ratio are assumed to vary in the
thickness direction. According to the Ritz method, the spatial dis-
placement components in the three coordinate directions are rep-
resented by sets of one-dimensional Chebyshev polynomials mul-
tiplied by corresponding boundary functions, such that the
essential geometric conditions are identically satisfied at the out-
set. The effects of variation of the volume fraction of the constitu-
ent materials on the through the thickness deflections, in-plane
displacements and axial stress distributions are studied.

2 Formulation of the Problem

A FG rectangular plate of length a, width b, and uniform thick-
ness / is considered. The volume and the top surface are indicated
with V and (), respectively. The origin of the Cartesian coordinate
system (x,y,z) is the center of the plate and the axes are parallel
to the edges of the plate. It is assumed that the FGM is made of a
mixture of a ceramic and a metallic component. Young’s modulus
E and Poisson’s ratio v vary across the thickness according to the
following equations:

E(z) = (Ec - Em)vf+ E,, wz) = (Vc - Vm)Vf+ Vins

Vi=(zlh+1/2)Y, (1)

where V; is the ceramic volume fraction and N is the volume
fraction exponent which takes positive real values. The value of N
equal to zero represents a fully ceramic plate, when N is approach-
ing the case of the fully metallic plate is obtained. According to
this distribution, the bottom surface, z=—h/2, of the functionally
graded plate is pure metal and the top surface, z=h/2, is pure
ceramic. Subscripts ¢ and m stand for the corresponding proper-
ties of the pure ceramic and pure metal. The above power-law
assumption reflects a simple rule of mixture used to obtain the
effective properties of the FG plate [6].

3 A Three-Dimensional Analysis

The generic configuration of the plate is described by the dis-
placement components u(x,y,z), v(x,y,z), and w(x,y,z) in the
x, y, and z directions, respectively. In the three-dimensional set-
ting, the stress-displacement relations are:

=N, +vy+w)+2uu ), (2)
Oy =N +v ,+w ) +2u ), (3)
O =N, +v, +w )+ 2ulw,), (4)
Oy =pluy+v,), (5)
Op=plu +w,), (6)
Oy = v +wy), ™

where N and w are the Lame coefficients:

N2 =vE[(1+v)(1-2v)], w(z)=EN2(1+v)], (8)

functions of z and a comma followed by a variable denotes dif-
ferentiation with respect to that variable. The strain energy of a
three-dimensional solid can be written as:
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Vv

+o w )+ ul(u,+v )+ +w )+ +w,) V.
)

The work done by a transverse loading ¢(x,y) acting over the
surface () of the plate is given by:

W:j q(x,y)w(x,y,h/2)dQ). (10)
Q

For simplicity, the (£, 5,{) nondimensional coordinate system is
introduced, where:
E=2xla, n=2ylb, (=2zlh. (11)

To apply the Ritz method, the displacement components in the
nondimensional coordinate system are approximated by expres-
sions of the type:

Wén ) =F(£ n)E EE CLPLOP(PLY,  (12)

L M N
v(EnD=F (602 2 2 CluPIOP (P, (13)

€ n

P QO R
w(&m.0) = F,(£ n)E > E Ch PEP (PO, (14)

q

where Ciy, Cy,,, and C[’; denote undetermined components,

F,, F,, and F,, are appropriate boundary functions, while P(y) is
the so-called coordinate function, with s representing the serial
index and xy=¢, 7, {. In this work, Chebyshev polynomials are
considered as coordinate functions. Thus, in Egs. (12)—(14), P,(x)
is the one-dimensional sth Chebyshev polynomial which can be
written via a recurrence relation [12]:

Po(X) =2xP(x) — Ps_y(x) with s=2,3,... and =&, 7.

(15)

For s=1, P;(x) is equal to 1. It is known that Chebyshev polyno-
mials constitute an orthogonal polynomial sequence with respect
to the weighting function w(y)=(1—x?)"? on the interval [
-1,1].

The load g(&, ) is assumed to be applied downward on the top
surface and is represented in the general form of a double series:

G =2 2 CupPulEP4(7), (16)
a B

where P,(£) and Pg(7) are Chebyshev polynomials.

4 Solution Procedure

For equilibrium, the total energy functional II, defined as the
difference between the strain energy ®, Eq. (9), and the potential
energy of the load W, Eq. (10), [I=®-W, of the system must be
a minimum. This is accomplished by minimizing the total energy
IT with respect to the components Ciy, Cy,,,, and Cp,:

l/aCiy =0, 9Il/aCy,,=0, dl/aC,,=0.  (17)
From Eq. (17), the following governing equation is obtained:
KC-Q=0 (18)

in which K, Q, and C are the stiffness matrix, the load vector and
the vector of the displacement coefficients, respectively, in the
form:
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Kuu KMU KMW 0 Cu
K= K, K, | Q0| c=c (19)
Sym K,, Q c

The explicit form of the elements in the stiffness sub-matrices K;
with i,j=u,v,w in Eq. (19) are given by:
2
(2o

11 L
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01 10 400
DY EN TV,
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a 2 2
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(r,s=0,1; a,B=u,v,w; o=1i,j,k,l,m,n,p,q,r;

where Young’s modulus E({) and Poisson’s ratio v({) have the
expressmns of Eq. (1). The functions f!(¢), fﬁ(g) Fi(m), and
fﬁ(n) are employed to satisfy boundary conditions. In the Ritz
method, the satisfaction of geometric boundary conditions must
be ensured. In this study, a fully clamped plate is considered, thus
the edge conditions can be specified as:

u=0, v=0, w=0até==1, (22)

The boundary functions F,(&, ), F,(&, 1), and F,,(¢,7) in Egs.
(12)—(14) ensure that the displacement components satisfy the es-
sential geometric boundary conditions for the plate in a pointwise
manner. They can be written in the following way:

Fo&m) =fo(&f§(n) with 8= u,v,w (23)
where, in the case of a clamped plate, f(£) and f2§( 7) are given by
1-& and 1- 177, respectively.

The element of the load vector Q in Eq. (19) reads:

n==1.

SEPTEMBER 2005, Vol. 72 / 789



Q= EE % Oup
1
X f PL(OP,(Of,(£)dE
-1

1
X f PP (nfe(m)dnP(1). (24)
-1

Substituting the expressions of the displacement components, Eqs.
(12)—(14), in the expressions of the strain energy ® and of the
potential energy of the load W, Egs. (9) and (10), the governing
Eq. (18) can be obtained and from that equation the coefficient
vector C is determined.

5 Results and Discussion

In this section, an all-round FG square clamped plate (a/b
=1) of thickness-side ratio h/a=0.2 is considered. The constituent
materials of the FG plate are aluminum (Al) and silicon carbide
(SiC) with mechanical properties: E,,=70 GPa, v,,=0.30, E.
=427 GPa, and ».=0.17 [13].

The case of a load ¢ uniformly distributed over the upper
surface of the plate is considered. To calculate any particular co-
efficient O, of the series of Eq. (16), both sides of Eq. (16) are
multiplied by P, (&)Pg (n)wé)w, (), where wy(£), w,(7) are
weighting functions, and integrated twice from —1 to 1. From the
orthogonality property of Chebyshev polynomials, the resulting
integrals are different from zero only when a’=3'=1, that means
P (€)=Pg(7)=1. As a consequence, also « and 8 have to be
equal to 1, that means P,(§)=Pg(n)=1. From these consider-
ations, the only coefficient different from zero is Qq; and is equal
to gp. In the calculations, the value of the uniformly distributed
load g, is taken to be 10° N/m?.

Numerical results are presented in terms of the following non-
dimensional displacement and stress parameters: u=u/h, w
=w/h, and &,=h*c,./(a%|q)).

A convergence study on the central deflection w shows that the
number of terms in the series must be chosen equal to 8, 8, and 6
in the x, y, and z direction, respectively, as represented in Fig. 1.
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Fig. 1 Convergence study on the nondimensional central de-

flection w

The analyses are performed for different values of the volume
fraction exponent N=0.2, 0.5, 1, and 2.

In Fig. 2 the nondimensional central deflection w and the in-
plane displacement i, evaluated at §=1/2 and 5=1/2, versus the
thickness direction are depicted. The nondimensional central de-
flection w of the purely metallic plate was found to be of the
largest magnitude and that of the purely ceramic plate, of the
smallest magnitude. All the plates with intermediate properties
undergo corresponding intermediate values. The purely aluminum
plate exhibits the largest in-plane displacements in absolute value
at the top and at the bottom surfaces, while the plate made only by
silicon carbide has the smallest ones. This is expected because the
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Fig. 2 Nondimensional deflection w and in-plane displacement & through the thickness
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Fig. 3 Nondimensional axial stresses o,, at £=1/2, y=1/2 and in the clamped edge through the thickness

metallic plate has a lower stiffness than the ceramic plate. As it
can be seen, at the bottom surface, {=—1 and its vicinity, the
in-plane displacements i of the FG plates are in between those
with homogeneous constituents. The same takes place at the upper
surface {=1 and its vicinity. Remarkably, across the thickness,
there is a central region where the FG plates with different values
of the exponent N exhibit a response that is not intermediate to the
fully metallic and fully ceramic plates. Besides, there is a point at
{=0.5, where the plates for different values of N share the same
in-plane displacement. It should be remarked that lack of symme-
try in the displacement profiles is attributable to the fact that there
is no symmetry in the load itself with respect to the mid-plane of
the plate; in addition the mechanical properties vary through the
thickness of the plate in accordance with nonsymmetric power-
laws, Eq. (1).

Figure 3 represents the plots of the nondimensional axial
stresses 0, evaluated at é&=1/2, »=1/2, and in the clamped edge
(é=1, 7=0) through the thickness. The axial stress @,, at &
=1/2, »=1/2, due to the application of the pressure loading, is
compressive at the top surface and tensile at the bottom surface.
For the several volume fraction exponents chosen, the plate cor-
responding to N=2 yields the maximum compressive stress at the
top surface, {=1, while the purely metallic plate experiences the
maximum tensile stress at the bottom surface, {=—1. While in the
clamped edge the stress profiles &, is of tension at the top surface
and of compression at the bottom. It is worth noting that the stress
profiles &, at é£=1/2, »=1/2, and &, at £€=1, »=0 for the fully
ceramic and fully metallic plates do not coincide. This is due to
the fact that there is a strong dependence of the stresses on the
Poisson’s ratios, that for the aluminum and silicon carbide com-
ponents are different.

6 Conclusion

In this paper, the Ritz energy method is developed on the basis
of the three-dimensional elasticity theory to predict displacements
and stresses of all-round clamped functionally graded plates sub-
jected to a uniform load on the top surface. A two-component
graded plate with a power-law variation of the volume fraction of
the constituents through the thickness has been considered.
Chebyshev polynomials are assumed as coordinate functions mul-
tiplied by appropriate boundary functions in order to satisfy the
geometric boundary conditions. The effect of varying the volume

Journal of Applied Mechanics

fraction on the nondimensional displacements and stresses has
been presented. From the reported results, it can be concluded that
the displacements and the axial stresses in an arbitrary point of a
functionally graded plate do not necessarily lie between those of
the ceramic and metal. Thus, the gradient in material properties
plays an important role in determining the response of the FG
plates. It should be remarked that the concepts outlined in this
study are not confined to the all-round clamped FG plates. They
can be directly extended also to other boundary conditions,
power-law distributions and thicknesses. The presented three-
dimensional numerical results are important in complementing so-
lutions derived from other plate theories like first and higher order
plate theories.
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The Liiders’ front and a previously discovered optical interfero-
metric band structure were observed simultaneously in steel speci-
mens under tensile loading. The observed Liiders’ front and opti-
cal band structure show the same propagation characteristics,
confirming our previous interpretation that the optical band struc-
ture represents the plastic deformation front. Analysis shows that
the stress at which the optical band structure begins to appear is
approximately 10% lower than the corresponding Liiders’ front,
indicating that the optical band structure reveals the plastic de-
formation front with higher sensitivity than the Liiders’
front. [DOL: 10.1115/1.1985431]

1 Introduction

Previously, Yoshida et al. [1] discovered an optical interfero-
metric band-structure whose appearance is quite similar to that of
the plastic deformation front. This band structure, called the white
band (WB) hereafter [2], can be observed in an interferometric
fringe pattern formed by a technique known as the in-plane sen-
sitive, electronic spackle-pattern interferometry (ESPI) [3]. Near
the yield point, the WB propagates in a way similar to the plastic
deformation front known as the Liiders’ front [4], and in later
stages, it resembles a more developed deformation front which
eventually stays at the location of fracture [1]. These observations
indicate that the WB can be used as an indicator of the plastic
deformation front, and will be useful for various studies including
quantitative analysis of plastic deformation. In fact, a previous
study [5] indicates that the stress is getting concentrated at the
banded region where the WB is about to form. To further continue
this line of research, it is important to confirm that the WB indeed
represents the plastic deformation front.

In this study, we simultaneously monitored Liiders’ fronts and
WBs on the front and rear surfaces, respectively, of the same
specimen under tensile loading. Consequently, pairs of Liiders’
fronts and WBs were observed to appear concurrently and propa-
gate synchronously at locations close to each other, indicating that
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they certainly represents the same phenomenon. Also of interest is
that the WB begins to appear at about 10% lower stress than the
Liiders® front, showing that it indicates the plastic deformation
front with higher sensitivity than the Liiders’ front.

2 Experimental Setup

The material used in this study was commercially available
structural steel SS400. Prior to the machining, the material was
annealed at 900 °C, and its grain size was measured to be 15 um.
The material was then machined to be two types of specimens; the
first type was a bone shape with a parallel part of 50 mm long, 10
mm wide, and 5 mm thick, and the second type was a rectangle of
80 mm long (the grip-to-grip length), 15 mm wide and 3 mm
thick. To visualize the Liiders’ front to the naked eye, we polished
the rear surface of the specimen with an abrasive paper of grit
number 2000. [6]. The front surface was first polished with an
abrasive paper of grit number 100 and then painted white to visu-
alize WBs at a high contrast.

We illuminated the rear surface of the specimen with a fluores-
cent lamp, and recorded the image with a video recorder. The
ESPI setup used for the front surface of the specimen was a typi-
cal dual-beam configuration [3]. We took specklegrams of the
specimen with a CCD (Charged Coupled Device) camera at a
sampling rate of 1 frame/s, and stored the image data into com-
puter memory at the same rate. The tensile load was applied at
constant crosshead speeds. The applied load and the stroke of the
dynamic grip were recorded at a rate of 10 sample/s. Rulers were
attached to the lower grip of the test machine on both sides, so
that the locations of the Liiders’ line and WB could be read di-
rectly on the respective images. We formed interferometric fringe
patterns by subtracting the specklegram taken at one time step
from the specklegram taken several time steps before, which cor-
responded to the total elongation of 10-30 um.

3 Results and Discussions

Figure 1 shows the Liiders’ front and WB observed in the first
type of specimen at the crosshead speed of 2.5 um/s. In this
particular run, a pair of Liiders’ front and WB appeared near the
lower end of the specimen and propagated upward. Except that
the Liiders’ front and the corresponding WB are slanting in mu-
tually opposite orientations because they are observed from the
opposite sides of the specimen, they propagate in a very similar
fashion. Figure 2 plots the locations of the centers of the Liiders’
front and WB measured from a reference point near the lower grip
as a function of time. The solid lines are the best fits to the data
points. From the slopes of these lines, the propagation velocities
of the Liders’ front and the WB are found to be 1.11
X 10™ m/s and 1.13X 10~ m/s, respectively. Considering that
the error associated with the reading of the locations of the
Liiders’ line and WBs is estimated to be +2%, it is fair to say that
the Liiders’ front and the WB propagate at the same velocity.

Figure 3 shows the stress-strain diagram in the plastic regime
along with its expanded view near the yield point. This diagram
was recorded at the same time as Fig. 1. The extents where the
Liiders’ fronts and WB appear are marked, respectively. From the
observed yield elongation (region between points A and B) and
the specimen length of 50 mm, the yield strain ; can be esti-
mated to be 0.0197. Using this yield strain, the crosshead speed
V.=2.5X10° m/s and the relationship V;=V/g; derived by
Sylwestrowicz and Hall [7], the theoretical velocity of the Liiders’
front can be estimated to be V,=1.27X107* m/s. This value
shows a good agreement with the measurement, as the dashed line
in Fig. 2 indicates.

While the theoretical velocity of the Liiders’ front based on the
yield strain agrees with experiment, Fig. 3 indicates that the
Liiders’ front or WB does not extend the whole span of the yield
elongation. A possible explanation of this observation is that while
the plastic deformation front begins to propagate at the lower end
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Fig. 1 Luders’ front (upper) and WB (lower) observed simulta-
neously at the crosshead speed of 2.5 um/s. Numbers repre-
sent the elapsed time in s from a reference time set before the
yield point. The window inserted in the leftmost image of the
upper row indicates the view of the lower images
approximately.

of the specimen at the yield stress and completes the propagation
at the upper end of the specimen at the end of the yield elongation,
the initial and final parts of the propagation are not manifested as
the Liiders’ front or WB. The fact that the WB appears earlier and
disappears later than the Liiders’ front indicates that the former
has higher sensitivity as an indicator of the plastic deformation
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Fig. 2 Locations of Liiders’ front and WB as a function of time.
The crosshead speed is 2.5 um/s.
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Fig. 3 The stress-strain diagram in the plastic regime re-
corded at the same time as Fig. 1. The expanded view indicates
the stress values when the Liiders’ front and WB begin to
appear.

Journal of Applied Mechanics
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Fig. 4 Liders’ front (upper) and WB (lower) observed simulta-
neously at the crosshead speed of 25 um/s. The Liders’ front
taken at time step 184 is not shown because of poor quality.

front. The expanded view in Fig. 3 shows that the WB begins to
appear at 8% lower stress than the Liiders’ front [8]. This obser-
vation is consistent with the previous finding by Funamoto [9] for
the same material that the WB begins to appear near a circular
hole at a stress value 11% lower than the corresponding stretcher-
strain.

At the crosshead speed of 25 um/s, a similar relationship be-
tween the Liiders’ front and WB was observed. Figure 4 shows the
Liiders’ front and WB observed in the second type of specimen at
this crosshead speed. In this run, two pairs of Liiders’ front and
WB began to appear at the upper and lower end of the specimen,
respectively, within a time lag less than 30 s. At this crosshead
speed, the Liiders’ fronts show less sharp edges, as is normally the
case. The two pairs of Liiders’ front and WB propagated along the
length of the specimen in mutually opposite directions. Figure 5
shows the locations of the pairs as a function of time. Like Fig. 2,
the Liiders’ front and WB of the same pair propagate at the same
velocity, which is reasonably close to the theoretical Liiders’ front
velocity (dashed lines) estimated in the same fashion as Fig. 2.
(The lower Liiders’ front and WB show somewhat higher velocity
than the theoretical value, and its reason is not clear.) Unlike Fig.
2, however, both the Liiders’ front and the WB fluctuate around
the fitted straight lines, indicating that when the Liiders’ front
forms a less sharp edge, it does not propagate at a constant veloc-
ity but somewhat fluctuates around a mean value. The WB ob-
served under this condition follows a similar, fluctuating trend,
indicating that it still represents the same phenomenon as the
Liiders’ front. We examined the second type of specimen at the
crosshead speed of 2.5 us/s and observed a straight trend similar
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Fig. 5 Locations of Liuders’ front and WB as a function of time.
The crosshead speed is 25 um/s.
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Fig. 6 WB obtained for a common specklegram with various
subtraction increments

to Fig. 2. Judging from this result, the fluctuating trend observed
in Fig. 5 is not caused by the difference in the shape of the speci-
men but the difference in the crosshead speed.

The fringe patterns observed in the regions divided by the WBs
can be characterized as consisting of nearly equidistant and hori-
zontally parallel fringes (see Figs. 1, 4, and 6). A system of per-
fectly equidistant and horizontally parallel fringes observed in a
horizontally sensitive ESPI setup represents a rigid body rotation
of the object [10]. This observation, therefore, indicates that the
deformation is concentrated at the Liiders’ front in such a way that
the regions divided by the front experience rigid body like rota-
tions [5]; i.e., there is a stress concentration at the Liiders’ front.

Figure 6 shows fringe patterns formed by subtracting several
specklegrams from a common specklegram (frame #180) varying
the time-step increment. The number shown underneath each
fringe pattern denotes the number of the frames involved in the
subtraction. The fringe systems seen in these patterns have the
following features. The region above the WB (region 1) shows
nearly the equidistant, horizontally parallel system representing a
rigid body like rotation. The region inside the WB (region 2)
shows a dense fringes parallel to the WB, representing a concen-
trated strain normal to the WB. The region below the WB (region
3) does not show a clear fringe structure. As the number of the
time-step increment increases in going from (a) to (f), the number
of fringes in region 1 increases rather constantly. The number of
fringes in region 2 also increases, at a rate much higher than
region 1. In going from (a) to (c), the fringe density in region 2
becomes four or five times higher, while the number of fringes in
region 1 increases by one. The fringe pattern in region 3 remains
more or less the same in (a) through (f). These features can be
interpreted as follows. When the Liiders’ front was formed, the
material in the vicinity of the front experienced a localized defor-
mation. As the time went by, the part of the specimen held by the
dynamic grip (region 3) displaced in the vertical direction as a
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rigid body (without substantial deformation), forming no clear
fringe structure. This motion sustained the localized deformation
in region 2. While this happened, the localized deformation
moved up by some mechanism as the other side of the material
(region 1) rotated as nearly a rigid body at an approximately con-
stant rate.

4 Conclusion

The result of this study confirms that the WB represents the
same phenomenon as the Liiders’ front, supporting our previous
interpretation. Now that this has been confirmed, further investi-
gation on the plastic deformation front can be pursued through
analysis on the WB. It is observed that the WB appears at about
10% lower stress than the Liiders’ front, indicating that the WB
has higher sensitivity than the Liiders’ front as an indicator of the
plastic deformation front.
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The buckling of a circular plate on an elastic foundation is studied
analytically. The buckling mode may not be axisymmetric as pre-
viously assumed. [DOIL: 10.1115/1.1988347]

Introduction

The prediction of buckling of structural members restrained lat-
erally is important in the design of engineering components which
are attached to a foundation. The buckling of beams on an elastic
foundation has been well studied (see Hetenyi [1]). It was found
that for stiffer foundations, the buckling load corresponds to a
mode with increased nodes. The buckling of rectangular plates
was discussed by Seide [2] and Vlasov and Leontev [3] but only
for very narrow plates. Analytic solution for the buckling loads for
a rectangular plate is possible if two opposite sides are simply
supported [4], otherwise numerical means is necessary [5]. The
buckling of circular plates was studied by several authors [6-9].
However, these sources only considered axisymmetric buckling,
which may not lead to the correct buckling load. The purpose of
the present Note is to complete the results of the buckling of
circular plates by including the nonaxisymmetric buckling modes,
thus correctly determining the buckling loads.

Formulation

Following Yu [6], the governing equation for a thin (Kirchkoff)
plate attached to a Winkler foundation is

DV*w + NV2w +kw =0 (1)

where w is the lateral displacement, D is the flexural rigidity, N is
the uniform compressive load at the edge, and k is the spring
constant of the foundation. If we normalize lengths by the radius
of the plate R, Eq. (1) can be written as

Vi + N2V + y'w =0 2)

where N>=NR?/D is a load parameter and y*=kR*/D is a stiff-
ness parameter. Suppose there are n nodal diameters. In polar
coordinates (r, 6) set

w=u(r)cos(nb) (3)
Equation (2) becomes
L2u+NLu+ yu=0 (4)
where L is the operator
2 2
e ®
The general solution which is bounded at the origi_n is as follows.
Let J, be the Bessel function of order n. If N> \27y
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u=CJ,(ar) + CyJ,(Br) (6)
where
NERUSIEVIALS SERUSEVIALS
a=< 2 y) ’ /3=< 2 7) 7
If A= \E'y the solution is
u=CiJ,(yr) + Cord,y (yr) (8)
If A <1\21 the solution is
u=C,Re[J,(ior)]+ C, Im[J,(i6r)] 9)
where i=1\~1 and
6=<—)\2+ \'Wz)m (10)

These solutions reduce to those of the axisymmetric cases studied
by previous authors when n=0. In what follows we shall present
the results for the clamped boundary, the simply supported bound-
ary, and the free boundary.

Results and Discussion

For the clamped boundary, the edge conditions are zero dis-
placement and zero slope

u(1)=0, u'(1)=0 (11)

For nontrivial solutions of Cy, C,, Egs. (11) give an exact deter-
minant for the three cases Egs. (6), (8), and (9). Then for each n
and v, the buckling load, represented by A, is found from the
characteristic equation by simple root search. Figure 1 shows \
rises monotonically with the foundation stiffness parameter y. We
see that the n=0 symmetric solution weaves with the n=1 non-
symmetric solution. When stiffness is zero, the untethered plate
buckles axisymmetrically with A=3.8317 which is the first zero of
J1(N)=0. When v is increased beyond 3.644 (A=6.022), the n
=1 nonsymmetric mode gives the correct lower buckling load.
This persists until y=5.185 (A\=7.994) where the n=0 mode again
determines the buckling load. The next two switches are at 7y
=6.912 (A=10.265) and y=8.446 (\=12.355). Kline and Han-
cock [8] obtained only the n=0 curve, thus overestimated the
buckling load where the n=1 mode gives the buckling load. In the
range of stiffness considered, the higher modes do not affect the
buckling loads but may be a factor when the foundation is ex-
tremely stiff. Notice that the buckling loads all satisfy N> V2 Y.

For the simply supported boundary, the edge conditions are
zero deflection and zero moment

u(1)=0, u"(1)+1{u'(1) —n*u(1)]=0 (12)

where v is the Poisson ratio. When the foundation is absent, the
buckling load corresponds to the axisymmetric mode and is given
by the first root of

Mo = (1= v)J;(\) =0 (13)

For v=0.3 (metals) we find A=2.0489. Figure 2 shows the results
are similar to that of the clamped case. The buckling loads are
lower, and all three forms of Egs. (6), (8), and (9) are used. The
transition points between the n=0 modes and the n=1 modes are
at y=3.047 (A=4.359), y=4.604 (\=6.605), y=6.228 (A
=8.843), y=7.795 (A=11.072), etc. Again, the buckling loads
found by the previous authors who considered only the symmetric
modes may be erroneous.

The plate with free edge on an elastic foundation has not been
considered before. Note that without the foundation, the buckling
problem does not exist—the buckling force is always zero. The
edge boundary conditions are zero moment and zero shear

wW'(1)+ fu' (1) = n*u(1)]=0 (14)
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14

Fig. 1 Buckling load parameter A\ versus foundation stiffness
parameter y for the clamped edge. Only the solid line repre-
sents the buckling load. Small circles denote a change in buck-
ling modes. The dotted line is from the n=2 mode. The buckling
modes are shown schematically as disks with nodal lines.

W (D) +u" (D) =-[1+n2Q2-v) = Nu' (1) +n*B - v)u(1) =0
(15)
The term with A% in Eq. (15) is due to the compressive force
component [10]. We find the buckling load is low, such that N

<\27. Figure 3 shows, for v=0.3, the buckling load starts from
zero, corresponding to the n=1 mode, until y=2.059 (\=2.046)

L

(o] 2 4 8 8 10

Fig. 2 A\ versus y for the simply-supported edge. Legend is
similar to that of Fig. 1.
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Fig. 3 A\ versus y for the free edge. Legend is similar to that of
Fig. 1.

where the buckling load is determined by the n=2 mode. Then as
v reaches 2.550 (A=2.502) the buckling mode becomes symmet-
ric (n=0) and stays symmetric for the range of stiffness consid-
ered.

The buckling load of a thin circular plate on an elastic founda-
tion is now correctly determined. We found that the buckling load
is determined not only by the axisymmetric modes considered by
previous authors, but also by nonaxisymmetric modes as well.
Our figures will be useful in the basic design of embedded circular
plates.

Last, in this paper the characteristic equations are exact, and the
solutions can be found to any accuracy. Thus exact solutions can
be used to check approximate or numerical results [11]. On the
other hand, numerical solutions such as the Ritz method rely on
the a priori perception of the correct buckling mode. This would
be difficult in view of the many buckling modes found in this

paper.
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A three-dimensional (3D) method of analysis is presented for
determining the free vibration frequencies and mode shapes of
thick, complete (not truncated) conical shells of revolution in
which the bottom edges are normal to the midsurface of the shells
based upon the circular cylindrical coordinate system using the
Ritz method. Comparisons are made between the frequencies and
the corresponding mode shapes of the conical shells from the
authors’ former analysis with bottom edges parallel to the axial
direction and the present analysis with the edges normal to shell
midsurfaces. [DOIL: 10.1115/1.1989355]

1 Introduction

Recently the present authors [1] demonstrated a three-
dimensional (3D) method of analysis for determining the free vi-
bration frequencies and mode shapes of thick, complete (not trun-
cated) conical shells of revolution. An edge of a shell is typically
assumed to be normal to the midsurface of the shell. However, the
bottom edge of the conical shell that they used in [1] was not
normal to the midsurface, but parallel to the axial (z) direction (or,
to the axis of revolution) in order to simplify the evaluation of
energy functionals.

In the present paper, the conical shells of revolution with the
bottom edge normal to the midsurface of the shell are analyzed by
a 3D method based upon the circular cylindrical coordinate sys-
tem (r,z, ) using the Ritz method as in [1]. All the symbols and
variables used in the present paper are the same as those used in
the former analysis. The only difference in analysis between the
present paper and [1] is that the domain for the shell, and there-
fore the limits of energy integrals, are changed. Convergence stud-
ies were made for the present work, which are similar to those
shown in [1], but are omitted here to save space.

2 Method of Analysis

A representative cross section of a complete conical shell of
revolution with the vertex half-angle «, the radius of midsurface
of the cone at the bottom face R, and the uniform wall thickness
h(=H sin ), where H is the vertical slant thickness, is shown in
Fig. 1. The cylindrical coordinate system (r,z, 6), also shown in
the figure, is used in the analysis. The axes of r, z, and 6 are the
radial, axial, and circumferential coordinates, respectively. The
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origin of the (r,z) coordinates is located at the vertex of the mid-
surface of the conical shell. The straight lines z; ,,, in Fig. 1 are
the inner, middle, and outer surfaces of the conical shell, respec-
tively, and their equations are expressed as

7, =1 cCot a, (1)

Zipo=rcota+H/2. (2)

The bottom edge is normal to the midsurface of the conical shell
and its equation is expressed as

7,=—(r—R)tan @ + R cot a, (3)

while the equation of the edge in [1] was r=R, which is parallel to
the axial (z) direction. However, it is clear that the areas in the
cross sections of the shells used in the present and former [1]
analyses are equal. It can also be shown that the material volumes
are the same for both types of configuration. The line z;, intersects
the lines z;, at r=R; ,, respectively, where

R;,=R = (H sin a cos a)/2. 4)
The domain (Q) of the shell is therefore described by

0<r<R, 0<0<2m, (5a)

2, SISZ;,
and

Risrs=R,, 0s=60<2m.

(50)

The domain ({)) expressed in terms of the nondimensional cy-
lindrical coordinates (W, {, 6), defined by y=r/R and {=z/H, is
given by

2, <2<z,

0$¢$ ll/i’ §0§£§§i, 0$0$27T’ (6&)
and
lﬂiswsl//o’ goggsgb’ 0$6<27T, (6b)
where
o =R;/JR=17F (Hsin acos a)/2R, (7)
Lio=zio/H=(Rpcot a)/H=1/2, (8)
¢, = z,/H=R[cot a— (- 1)tan a)/H. 9)

The maximum potential (strain) energy (V. and the maxi-
mum Kinetic energy (T, functionals in a cycle of vibratory
motion are as follows:

GR2 i b Yo (&b
Vmax=E Jo f Iv'ﬂdévdl/f"'f.J Iypdldy |,

(10)

pwzHRz Ui Yo (&

Tmax= 2 Irl/fdfdlﬁ"' IT¢d§d¢ )

0 {o i 0

(11)
where
I, =[(MG)(ky + Ky + K3)* + 2(K% + K% + K%) + KZ]FI

+(K§+ K%)Fz, (12)

Ir=(U:+ UNT + UL, (13)

and p is mass density per unit volume, w is a natural frequency, A
and G are the Lamé parameters, k| ¢, and I'; , are defined as in
Eqgs. (14) and (15) of [1], respectively; and the displacement func-
tions U,, U,, Uy are also assumed as algebraic polynomials as in
Egs. (17) of [1].
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P

z (axis of revolution)

Fig. 1 A cross section of thick conical shell of revolution with
the bottom edge normal to the midsurface, and the circular cy-
lindrical coordinate system (r,z, 6)

3 Numerical Results and Comparisons

Tables 1 and 2 present the nondimensional frequencies in
wR\//% of completely free, very thick (h/R=0.3), and moder-
ately thick (h/R=0.1), complete conical shells of revolution, re-
spectively, with the vertex half-angles of a=15 deg, 30 deg,
45 deg, 60 deg, and 75 deg for Poisson’s ratio (v)=0.3. Thirty
frequencies are given for each configuration, which arise from six
circumferential wave numbers (n=07, 04, 1, 2, 3, 4) and the first
five modes (s=1, 2, 3, 4, 5) for each value of n, where the super-
scripts 7 and A indicate torsional and axisymmetric modes, re-

Present analysis
o =75°

Fig. 2 Comparison of thick (h/R=0.3) conical shells having
bottom edges of present analysis with those of [1]

spectively. The numbers in parentheses identify the first five fre-
quencies for each configuration. The zero frequencies of rigid
body modes are omitted from the tables. Tables 1 and 2 are cor-
responding to Tables 3 and 4 in [1].

It is seen from Tables 1 and 2 that the fundamental (lowest)
frequencies of all the configurations are for modes having two
(n=2) circumferential waves irrespective of the thickness ratio

Table 1 Nondimensional frequencies in wR\p/ G of completely free, conical shells with h/R=0.3 for »=0.3

n s a=15° a=30° a=45° a=60° a=75°
1 1.274 2.479 3.544 4.391 4.943
2 2.044 3.986 5.720 7.128 8.076
or 3 2777 5418 7.784 9.723 10.50
4 3.498 6.826 9.804 10.56 11.07
5 4223 8.236 10.63 11.67 1171
1 1.431 1.621(3) 1.580(3) 1.461(2) 1.280(2)
2 1.734 2416 2.855 3.174 3.378
04 3 2.169 3.222 3.864 4.016 3.949
4 2.763 3.706 4.908 6.003 6.711
5 2.832 4.997 6.844 8.027 8.652
1 0.7055(2) 1.751(5) 2.055(4) 2.217(4) 2.320(4)
2 1.220(5) 2.033 2.495 2.650 2715
1 3 1.548 2.658 3.660 4.556 5.147
4 1.740 2.870 3.949 4.997 5.680
5 2.198 3.880 5.525 6.180 6.648
1 0.5043(1) 0.5781(1) 0.6353(1) 0.6790(1) 0.7074(1)
2 1.124(3) 1.692(4) 2.078(5) 2.264(5) 2.330(5)
2 3 1.949 2723 3.022 3313 3.505
4 2.384 3.369 4.006 4.143 4213
5 2756 4.021 4.853 5.852 6.508
1 1.207(4) 1.322(2) 1.410(2) 1.474(3) 1.514(3)
2 2.072 2778 3.235 3.468 3.571
3 3 3.005 3.707 4.113 4.495 4759
4 3.329 4.627 5.503 5.691 5.784
5 4.019 5.428 6.168 7.177 7.828
1 2.049 2.196 2.307 2.387 2.436
2 3.102 3.862 4.306 4.538 4.652
4 3 4.079 4715 5.236 5.690 5.985
4 4350 5.889 6.956 7.232 7.358
5 5.327 6.805 7.495 8.460 9.079

Notes: T=torsional mode; A=axisymmetric mode. Numbers in parentheses identify frequency sequence.
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Table 2 Nondimensional frequencies in wR\p/G of completely free, conical shells with h/R=0.1 for ¥=0.3

n s a=15° a=30° a=45° a=60° a=75°
1 1.323 2.558 3.622 4.442 4.959
2 2.162 4.182 5.926 7.274 8.126
07 3 2.975 5.760 8.168 10.03 11.21
4 3.778 7.317 10.38 12.76 14.29
5 4.577 8.864 12.59 15.50 17.43
1 1.442 1.523 1.383(5) 1.141(4) 0.7770(3)
2 1.672 2.019 2.135 2.119 1.937
04 3 1.968 2.730 3.187 3.400 3.458
4 2.349 3.251 3.856 4.057 3.906
5 2.758 3.552 4.625 5.520 6.048
1 0.7509(4) 1.557 1.546 1.366(5) 1.108(5)
2 1.278 2.034 2.434 2.618 2.655
1 3 1.538 2.151 2.558 2.664 2.719
4 1.671 2.812 3.584 4.296 4.751
5 1.985 2.875 4.048 5.084 5.741
1 0.1931(1) 0.2271(1) 0.2476(1) 0.2568(1) 0.2582(1)
2 0.5571(3) 0.9301(4) 1.219(4) 1.424 1.562
2 3 1.100 1.889 2.349 2.436 2.383
4 1.553 2.548 2.789 3.180 3.502
5 2.019 2.767 3.933 4.191 4234
1 0.4647(2) 0.5172(2) 0.5519(2) 0.5737(2) 0.5854(2)
2 0.9300 1.384(5) 1.771 2.079 2.286
3 3 1.473 2431 3.252 3.586 3.606
4 2.009 3.434 3.634 4.045 4.484
5 2.704 3.527 4.949 5.756 5.816
1 0.8314(5) 0.9036(3) 0.9544(3) 0.9891(3) 1.010(4)
2 1.425 1.979 2.458 2.839 3.091
4 3 2.037 3.161 4.164 4.640 4.682
4 2.720 4.354 4.571 5.003 5.521
5 3.606 4.445 6.018 7.298 7.411

Notes: T=torsional mode; A =axisymmetric mode. Numbers in parentheses identify frequency sequence.

(h/R) and the vertex half-angle (a) as in [1]. For #/R=0.1, the
second frequencies are all for n=3 as in the former analysis of [1].

Table 3 compares the first five nondimensional frequencies in
wR \’m and the corresponding mode shapes (n,s) of completely
free, complete conical shells of revolution from the former analy-

sis in [1] with bottom edges parallel to the axial (z) direction and
the present analysis with the edges normal to shell midsurfaces for
v=0.3. It is observed that most of the frequencies from the present
analysis are larger than ones from the former one [1] with some
exceptions where the frequencies by the present method are un-

Table 3 Comparisons of the first five frequencies in wR\p/G and the corresponding mode shapes (n,s) of completely free,
complete conical shells of revolution from the former analysis [1] with bottom edges parallel to the axial (2) direction and the
present analysis with the bottom edges normal to shell midsurfaces (¥=0.3)

h/R=0.3 h/R=0.1
a Order Reference [1] Present Reference [1] Present
1 0.3949 2,1) 0.5043 2,1) 0.1831 2,1) 0.1931 (2,1)
2 0.6938 (1,1) 0.7055 (1,1) 0.4151 (3,1) 0.4647 (3,1)
15° 3 0.7627 (3,1) 1.124 2,2) 0.5495 (2,2) 0.5571 (2,2)
4 1.008 (2,2) 1.207 3,1 0.7001 (4,1) 0.7509 (1,1)
5 1.061 (4,1) 1.220 (1,2) 0.7495 (1,1) 0.8314 4,1)
1 0.5155 (2,1) 0.5781 (2,1) 0.2209 (2,1) 0.2271 (2,1)
2 1.101 3.1) 1322 311) 0.4931 31) 05172 31)
30° 3 1.651 2,2) 1.621 04,1) 0.8487 4,1) 0.9036 4,1)
4 1.655 04,1) 1.692 2,2) 0.9244 (2,2) 0.9301 (2,2)
5 1.711 (4,1) 1.751 (1,1) 1.362 (3,2) 1.384 (3,2)
1 0.5999 (2,1) 0.6353 (2,1) 0.2434 (2,1) 0.2476 (2,1)
2 1.299 (3,1) 1.410 (3,1) 0.5390 (3,1) 0.5519 (3,1)
45° 3 1608 1) 1580 0" 1) 0.9283 1) 0.9544 1)
4 2.024 (1,1) 2.055 (1,1) 1.216 (2,2) 1.219 (2,2)
5 2.075 (1) 2.078 22) 1.394 (041 1.383 (04 1)
1 0.6626 2,1) 0.6790 2,1) 0.2545 (2,1) 0.2568 (2,1)
2 1.427 (3,1) 1.461 04,1) 0.5678 (3,1) 0.5737 (3,1)
60° 3 1.481 04,1) 1.474 3,1 0.9782 (4,1) 0.9891 (4,1)
4 2203 (1) 2217 11 1.149 0. 1) 1.141 4. 1)
5 2.292 4,1) 2.264 2,2) 1.370 (1) 1.366 (1)
1 0.7032 (2,1) 0.7074 (2,1) 0.2575 (2,1) 0.2582 (2,1)
2 1.289 (0*.1) 1.280 (0.1 0.5839 (1) 0.5854 G1)
75° 3 1.503 (3,1) 1.514 (3,1) 0.7804 04,1) 0.7770 04,1)
4 2317 (1,1) 2.320 (1,1) 1.007 1) 1.010 1)
5 2.339 (2,2) 2.330 (2,2) 1.110 (1,1) 1.108 (1,1)
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derlined. Most of the frequencies of the former [1] configuration
are significantly lower than those of the present one, because the
former one is longer (for the same R) and its bottom edge is thin,
compared with the present shell (Fig. 2). As expected, the fre-
quencies for a=15 deg are considerably different (see Fig. 2) for
the two types of bottom edges. For a=75 deg the conical shell is
shallow, the two types are nearly the same, and the frequencies are
nearly the same. It is interesting to note that as the shell thickness
becomes thicker and a becomes smaller the order of the mode
shapes (n,s) is changed, particularly in higher modes. Such mode

800 / Vol. 72, SEPTEMBER 2005

shapes (n,s) from the present method are in boldface type. How-
ever, the (n,s) for the first mode shapes, irrespective of configu-
rations and all the (n,s) for A//R=0.1 and a<30 deg are not
changed.
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The Virtual Mass of a Rotating Sphere
in Fluids

Abdullah Abbas Kendoush

Department of Heat Transfer, Center of Engineering
Physics, Ministry of Sciences and Technology, Baghdad,
Iraq

An analytical solution to the virtual mass of a rotating fluid or
solid sphere is obtained. The solution is valid at Reynolds number
<10. The solution was based on integrating the kinetic energy of
the fluid round the rotating sphere. The value of the virtual mass
coefficient of the rotating sphere was found to be equal to 5.
[DOLI: 10.1115/1.1989357]

Introduction

When a sphere rotates in a fluid, a force is generated due to the
acceleration imparted to the fluid that rotates with the sphere. A
sphere here implies either fluid or solid sphere. This force must be
considered in the general equation of momentum. This force is
called the virtual or “added mass” force. Similar force occurs also
when a sphere oscillates in fluid or starts to move linearly from
rest. Davis [1] derived the following equation for the virtual mass
coefficient of an oscillating sphere:

1 3g
C,==- 5
2 160°a
where g is the acceleration due to gravity, () is the angular veloc-
ity, and a is the radius of the sphere.
Stokes [2] calculated C, of a sphere oscillating sinusoidally at
low Reynolds number (Re<<1) as follows:

1 9w

Co= 2T 4 &)
where v is the kinematic viscosity of the fluid. Based on the
above, Drew and Lahey [3] conjectured that the C, of a rotating
sphere must depend on the angular speed. Chan et al. [4] acknowl-
edged the absence of any precise information on the magnitude of
the C, of the rotating sphere. They were forced to use the classical
value of half for the accelerating and nonrotating sphere in their
analysis.

Kurose and Komori [5] analyzed numerically the drag and lift
forces on the rotating sphere in a linear shear flow without men-
tioning the forces of the virtual mass. The virtual mass of the
accelerating and nonrotating sphere derived earlier (Milne-
Thomson [6], p. 491) was based on potential flow. This derivation
that resulted in C,=1/2 was used later in viscous flow computa-
tions by numerous authors, e.g., Bagchi and Balachandar [7] and
Magnaudet et al. [8].

The purpose of the present paper is to provide an analytical
solution for the virtual mass of a rotating sphere in quiescent fluid.

(1)

Theoretical Analysis

Consider a rotating sphere (solid or fluid) in a mass of fluid of
density p. Let () be the speed of rotation common to both the fluid
particles and the sphere. Consider the fluid to be stationary at
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infinity. The flow field generated by the rotation of the sphere is
given as follows in spherical coordinates with the origin at the
center of the sphere (Lugt [9])

Ur= U0=0
3 )
a .
Uyp=Q—5sin 0
r

The kinetic energy of the fluid round the sphere is given by the
following equation that has been used previously by the author

[10]:
1
K= f ) EpUidV (4)

where V denotes the volume occupied by the fluid. The volume
dV of an elementary annular region about the line #=0 through
the sphere is given by the product of its perimeter (27 r sin 6),
width (rd 6) and depth dr. Thus

kul 00 1
K= f f —prﬁ27Tr sin Ord Odr (5)
6=0 v r=a 2

Substituting Eq. (3) into Eq. (5) and remembering that
[5sin®0d0=4/3 we get

K = (41/3)Q%pa’ (6)

The basic physical principles state that the kinetic energy of a
rotating sphere with the same speed () is given by the following:

K=(1/2)I0? (7)

where / is the moment of inertia of the sphere which is equal to
(2/5)Ma?* and M is the mass of the sphere, hence Eq. (4) becomes

K = (1/5)Ma*Q? (8)
Clearly, from Egs. (6) and (8) we get

M=5(§7Tpa3> )

which we note is precisely five times the mass of the fluid dis-
placed by the sphere. This mass is the virtual mass of the rotating
sphere. It is the effective mass of the fluid that must be added to
that of the rotating sphere in applying the equation of motion. The
virtual mass coefficient could be defined according to Cheng,
Drew, and Lahey [11] by the following:

Volume of ‘‘virtual mass’’

= 10
Y Volume of fluid displaced by the sphere (10)
Accordingly, the virtual mass coefficient of the rotating sphere
becomes

C,=5 (11)

To the best of our knowledge this is a result that has not been
reported before. The range of applicability of this equation is that
the Reynolds number Re < 10 where Re=(24)?()/2v. This restric-
tion is dictated by the flow field of Eq. (3). Unfortunately, there
are neither experimental data nor theoretical solutions to validate
the present result.

It is well known that initial acceleration of a spherical gas
bubble in liquid is equal to 2 g where g is the acceleration due to
gravity [12]. This arises from the value of the virtual mass coef-
ficient of the nonrotating sphere which is equal to half. Thus the
initial acceleration of the bubble that has been introduced into a
purely vortical flow, would be (1/5)g. This brand of research has
been presented by Sirdhar and Katz [13].

The contribution of the virtual mass to the drag, lift, and history
forces is given by the following intergrodifferential equation of
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momentum for the solid rotating sphere of density p, accelerating
with a velocity U in a quiescent fluid of viscosity v and density p

du 1 Lo 1 R
(Vpy+ Cvm)E =V(p,—p)g - SCopUS +5CpU”S

dU dT
(12)

d’T \[—
where V=4/3ma’, m=Vp, S=7Ta2, Cp= drag coefficient, and
C, = lift coefficient. The first and the fourth terms on the right

side of Eq. (12) represent the buoyancy and the history forces,
respectively.
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Buckling of Shallow Spherical Caps
Subjected to External Pressure

J. Btachut

Department of Engineering,
The University of Liverpool,
Liverpool L69 3GH, UK

This contribution details buckling tests and numerical results for
shallow spherical caps subjected to static and uniform external
pressure. Six mild steel caps were carefully CNC-machined from a
solid billet. Three caps were designed to fail elastically with the
remaining three failing within the plastic range. Caps’ shallow-
ness parameter, N\, varied from 3.5 to 5.5, and radius-to-thickness
ratio varied from 300 to 1800. [DOI: 10.1115/1.1993667]

1 Background

Buckling of spherical caps subjected to uniform and static ex-
ternal pressure has been researched for decades. References [1-3]
list most of the relevant work spanning a century or so. When
reviewing the experimental work on buckling of spherical caps it
becomes transparent that only small number of tests was carried
out on metallic caps. One specific set of seventeen tests is reported
in Ref. [4]. They were carried out on models with the base diam-
eter between 20 mm and 50 mm. All these models were machined
from a thick aluminum alloy plate. A drop in the buckling strength
was confirmed in these tests for small magnitude of caps’ geo-
metrical parameter lambda, i.e., for A=4.0. A number of subse-
quent tests did not follow the same trend. Various reasons were
given in order to explain this scatter of results around \=4.0.
By-and-large there appears to be no definitive answer to this di-
lemma. This limited experimental and numerical study re-
examines spherical caps’ static stability around A=4.0. The base
diameter of tested caps is about 176 mm, i.e., much larger than
reported in Ref. [4].

2 Geometry and Modeling Details

Let us consider a spherical cap of radius, R, base radius, a, and
constant wall thickness, t,—as sketched in Fig. 1. The shell is to
be clamped at the base and subjected to static, uniform external
pressure, p. The issue of boundary conditions, at the cap’s base,
has been the subject of wide discussions due to their effect on the
load carrying capacity. In the current study it has been decided to
have an integral base ring of ‘substantial dimensions’ attached to
each model—as sketched in Fig. 2. During testing the base ring
was fixed to test vessel’s heavy base by an additional fixing collar
rather then directly by bolts. The use of collar secured an evenly
distributed clamping force. Numerical simulations have shown
that clamping caps directly by bolts causes propagation of stresses
directly into the caps’ wall. The use of additional collar prevents
this from occurring. Details about this arrangement are depicted
later.

Material of the caps was mild steel which remained linear-
elastic up to the yield, followed by Liiders bands for about 2.0%.
Mechanical properties of mild steel were the same as reported in
Ref. [5]. That paper should be consulted for further details. Aver-
age mechanical properties of the mild steel were found from tests
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on round and flat specimens and they were Young’s modulus, E
=207.0 GPa, yield point of material, ayp=303.5 MPa, and Pois-
son’s ratio, v=0.28.

3 Experimental Details

A series of six cups, designated here as D1, ..., D6, were CNC-
machined from 245 mm diameter mild steel billet. The outer di-
ameter of the base flange was machined down to 206 mm in order
to accommodate the caps in the existing test vessel. Shells had a
heavy edge ring (20 mm thick and integral with the wall). Its role
was to model the fully clamped boundary conditions. The shal-
lowness parameter, A,

A =2[3(1 - ) ]"*(HI'"? (1)

was chosen to be between 3.5 and 5.5. The sequence of manufac-
turing for caps D1, ..., D6 was the same as described in Ref. [5].
It is worth noting only that after final machining caps were stress-
relieved in a vacuum furnace. Next, shape and wall thickness were
measured. Shape was measured using (XYZ)-coordinate measur-
ing table—as shown in Fig. 3. Measurements were taken along 14
equally spaced meridians and at 10 mm arc-length intervals. The
wall thickness was measured at the same grid as shape using a
customary “two-ball-bearing” arrangement. Table 1 contains aver-
age values for geometry (columns 2-4). It is seen from Table 1
that the height-to-wall thickness ratio varied approximately from
2.5 to 4.0 and the radius-to-thickness ratio varied from 300 to
1800. Examining the scatter of wall thickness, and radial devia-
tions from perfect geometry it was concluded that all caps were,
geometrically, near-perfect. As mentioned earlier caps were fixed
to test vessel’s base plate by means of an additional collar and by
a set of eight bolts—as shown in Fig. 4(b). The pressure tightness
was secured by an “O-ring”. The inner surface of caps was open
to atmosphere, and the pressurization medium was oil.

The above models were buckled through the single, incremental
application of quasi-static external pressure in a small pressure
vessel—see Fig. 4. Loading was carried out by a hand operated
pump and magnitude of pressure increments was 0.25% of antici-
pated buckling load. A time break of 60 s between two load steps
was maintained during all tests. All caps failed suddenly through a
snap-through mechanism resulting in a large, and axisymmetric,
indent at the apex. After unloading there was no snap-back in any
of tested caps. Typical view of a collapsed cap is depicted in Fig.
5. Values of experimental buckling pressures are given in Table 1
(column 5).

4 Discussion of Experimental and Numerical Results

In view of near-perfect shape of caps it was decided to employ
axisymmetric modeling for prediction of buckling loads. Two
pieces of existing software were used to obtain buckling loads.
BOSORS5 [6] provided the magnitudes of asymmetric bifurcation
and snap-through loads while ABAQUS [7] was used to check the
magnitude of the snap-through. Predictions of the latter two loads
by both codes were identical. In the analyses geometrical and
material nonlinearity were used. In the latter, elastic perfectly-
plastic modeling of the stress-strain curve was adopted. Table 2
summarizes experimental and numerical results which are normal-
ized by linear classical buckling pressure, pg, i..,

pa=2[3(1-1ATER)*. (2)

Comparison of experimental failure pressures with numerical pre-
dictions, as detailed in Table 2, is found to be good (with the ratio
Oof Peypt/ Prum Varying from 0.92 to 1.04). Figure 6 depicts position
of test values, for D1, ..., D6, on a plot of dimensionless buckling
pressure versus the shallowness parameter, A.

The values of the slenderness parameter, X, given by
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Fig. 1

X=[3(1_V2)]“4\/%ﬂ\/§ 3)

are provided in column two of Table 2. It is seen from Fig. 6 that
for 3.2<<\= <5.2 the load carrying capacity of considered caps
is determined by axisymmetric collapse irrespective whether this
is elastic or elastic-plastic collapse. Results shown in Fig. 6 indi-
cate that indeed there is a minimum of the load carrying capacity

Geometry of spherical cap

Mid-surface

a

Flange

Fig. 2 Joining arrangements between spherical shell and inte-
gral base flange

Table 1 Average experimental dimensions (mid-surface where
appropriate). Also, experimental buckling pressures.
Cap 2a (mm) H (mm) t (mm) R (mm) Pexpt (MPa)
D1 166.12 1.90 1.0 1816.5 0.0458
D2 166.13 2.15 1.02 1605.7 0.0523
D3 166.10 3.93 1.03 878.6 0.211
D4 166.12 2.96 1.76 1166.7 0.330
D5 166.10 4.56 1.76 759.3 0.650
D6 166.18 6.20 1.76 563.4 1.172

for A=4.0, again irrespective whether it is elastic or elastic-
plastic case. The transition from axisymmetric collapse to asym-
metric bifurcation mode appears to be nonsmooth, i.e., of the
cusp-type. The load-deflection curves for all six caps are depicted
in Fig. 7. Purely elastic behavior, up to the collapse, is noted for

Oil
Air Bleed Pressure Feed
¥ ! o i
= (A | .
- !

%v
N

Main
Pressu
Vv |

Top _|
Plate

RN
|

R

N

e

(a) Section through the vessel with spherical cap in place

P

Base Rin
e Hg

'O’ - Ring

0 '

N| R

NIk —

NIk N

NI Spherical

§|| Cap Clamping

(b) Arrangement for spherical cap clamping

Fig. 4 Section through the pressure vessel showing test ar-
rangements (Fig. 4(a)). Also, details of a cap fixing to the base
(Fig. 4(b)).

Fig. 3 Shape measuring table
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Fig. 5 Photograph of buckled spherical cap
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Table 2 Comparison of experimental buckling pressure, p.,,:, with classical, p, and numeri-

cal, poum, predictions. Also, the first yield pressures, p,,, and elastic collapse pressures, p.

Cap A A pyp (MPa) Pel (MPa) Pal (MPa) pexpl/pcl pnum/pc] pexpt/pnum
D1 2.104 3.56 - 0.0440 0.0755 0.61 0.59 1.04
D2 1.959 3.74 - 0.0571 0.101 0.52 0.57 0.92
D3 1.442 5.04 - 0.210 0.342 0.62 0.61 1.01
D4 1.271 3.35 0.308 0.358 0.567 0.58 0.59 0.98
D5 1.026 4.11 0.613 0.744 1.338 0.49 0.450 0.98
D6 0.883 4.84 0.929 1.432 2.430 0.48 0.49 0.99
4 r
1ot P
08
06
oD?2 144
04
————  Axisymmetric Collapse
02 F — — ——  Bifurcation Buckling (n = 2)
D1, D2, D3, = Experimental Tests
A
0.0L_/ 1 1 L 1
0.0 3.0 40 5.0 6.0 >
(a)
4 p
1.0F pCl
08}
0.6 A =1271
= 1.026
= 0.883 D5 S
04
Axisymmetric Collapse
02 F — — —  Bifurcation Buckling (n =2)
D4,D5,D6, = Experimental Tests
A
0.0 _/1/ ! . . .
0.0 3.0 4.0 5.0 6.0 >
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(b)

Fig. 6 Plot of buckling load vs shallowness parameter, A, for six values of
slenderness, A
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Fig. 7 Plots of external pressure versus apex deflection. Note
elastic behavior of models D,, D,, and D; at the collapse; and
magnitudes of first yield pressures for D,, Ds, and Dg.

D1, D2, and D3 models. Plastic straining occurs below the col-
lapse in the remaining models. Magnitudes of the corresponding
first yield pressures can be found in Table 2.

5 Conclusions

Results of this study confirm that the magnitude of axisymmet-
ric collapse pressure, of near-perfect spherical caps, reaches mini-
mum at shallowness parameter A =4.0. This observation remains
true for both elastic and elastic-plastic behavior. In the case of

806 / Vol. 72, SEPTEMBER 2005

elastic behavior, the axisymmetric collapse remains the control-
ling mode of failure for the shallowness parameter, A <5.5. For
larger values of lambda the asymmetric bifurcation mode controls
the failure. In the case of elastic-plastic behavior the transition
from bifurcation to axisymmetric collapse mode remains depen-

dent on the value of slenderness parameter, ):, and it moves to-
wards smaller values of A as the slenderness becomes smaller.
Finally, it is worth noting that the minimum of buckling strength
around A=4.0 is not a sharp one.
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